

Samtgemeinde Sögel · Postfach 11 49 · 49745 Sögel

Herr Gößling

Bauwesen (60)

Zimmer-Nr.
48
Durchwahl
05952/206-148
Telefax
05952/206-648
E-Mail
bauwesen@soegel.de
Website
www.soegel.de
Datum:

22.03.2024

Bekanntmachung

Bauleitplanung der Samtgemeinde Sögel

147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel (Sondergebiet "Biogasanlage" in der Mitgliedsgemeinde Börger)

Bekanntmachung des Aufstellungsbeschlusses gemäß § 2 Abs. 1 Baugesetzbuch (BauGB) und frühzeitige Beteiligung der Öffentlichkeit gemäß § 3 Abs. 1 BauGB

Der Samtgemeindeausschuss der Samtgemeinde Sögel hat in seiner Sitzung am 24.04.2023 die Aufstellung der 147. Änderung des Flächennutzungsplanes beschlossen.

Der Aufstellungsbeschluss der 147. Änderung des Flächennutzungsplanes wird hiermit gemäß § 2 Abs. 1 BauGB bekannt gemacht.

Ferner erfolgt der Hinweis, dass im Bauleitverfahren die Regelungen des § 2 Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG 2023) angewendet werden sollen.

Die Fläche liegt ca. 700 m nordöstliche der Ortslage von Börger, östlich der "Breddenberger Straße" (L 32). Im gültigen Flächennutzungsplan ist die Fläche als "Fläche für die Landwirtschaft" dargestellt. Das Plangebiet der 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel soll zukünftig als "Sondergebiet mit der Zweckbestimmung Biogas" dargestellt werden. Die genaue Lage des Plangebietes ergibt sich aus der Darstellung im anliegenden Übersichtsplan.

Gemäß § 3 Abs. 1 BauGB ist die Öffentlichkeit möglichst frühzeitig über die allgemeinen Ziele und Zwecke der Planung, sich wesentlich unterscheidende Lösungen, die für die Neugestaltung oder Entwicklung eines Gebietes in Betracht kommen, und die voraussichtlichen Auswirkungen der Planung öffentlich zu unterrichten. Auch Kinder und Jugendliche sind Teil der Öffentlichkeit im Sinne des § 3 Abs. 1 Satz 1 BauGB.

Die frühzeitige Unterrichtung der Öffentlichkeit gemäß § 3 Abs. 1 BauGB zur 147. Änderung des Flächennutzungsplanes findet statt am

Donnerstag, den 25.04.2024, in der Zeit von 14:00 bis 16:30 Uhr

bei der Samtgemeindeverwaltung Sögel, Fachbereich Bauwesen, Zimmer 148, Ludmillenhof, 49751 Sögel. Während dieser Unterrichtung wird Gelegenheit zur Äußerung und Erörterung gegeben.

Steuernummer: 53/200/29914

Interessierte Personen können sich bereits vor dem Termin über die allgemeinen Ziele, Zwecke und Auswirkungen der Planung im Internet im Rahmen einer Kurzbeschreibung auf der Homepage der Samtgemeinde Sögel unter https://www.soegel.de/oeffentliche-bekanntmachungen/bauleitplanung-sondergebiet-biogasanlage-boerger/ in der Zeit vom 02.04.2024 bis einschl. 03.05.2024 informieren. Darüber hinaus werden die Unterlagen über das zentrale Internetportal des Landes Niedersachsen https://uvp.niedersachsen.de in der vorgenannten Zeit zugänglich gemacht.

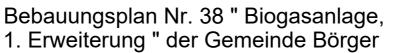
Ebenso weise ich darauf hin, dass die Unterlagen zur frühzeitigen Beteiligung der Öffentlichkeit in der Zeit vom

02.04.2024 bis einschließlich 03.05.2024

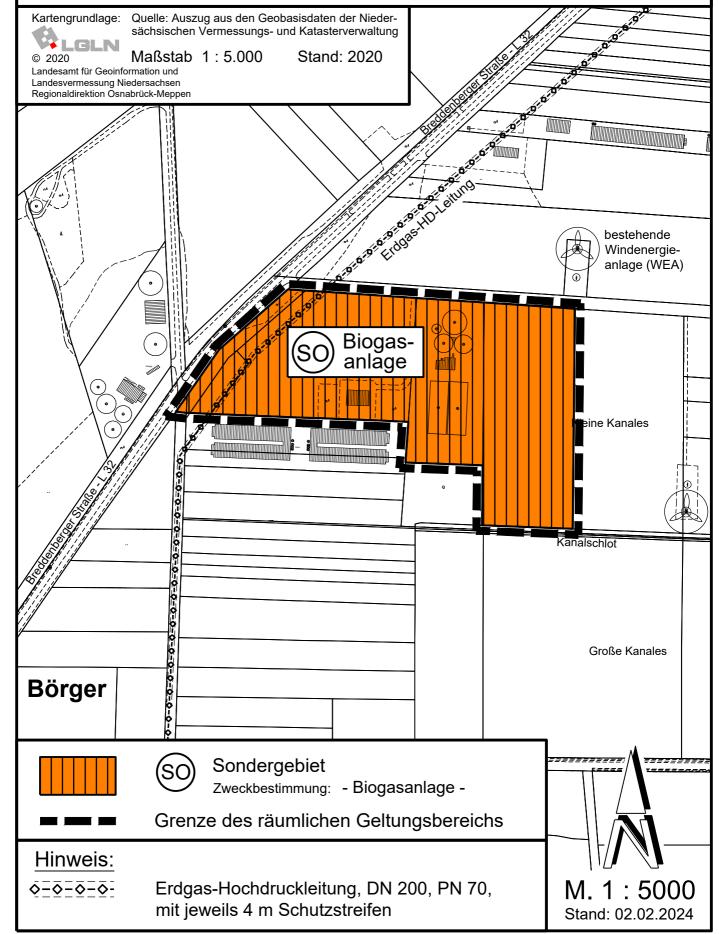
(Montag bis Donnerstag 8:00 Uhr bis 16:30 Uhr und Freitag 8:00 Uhr bis 13:00 Uhr)

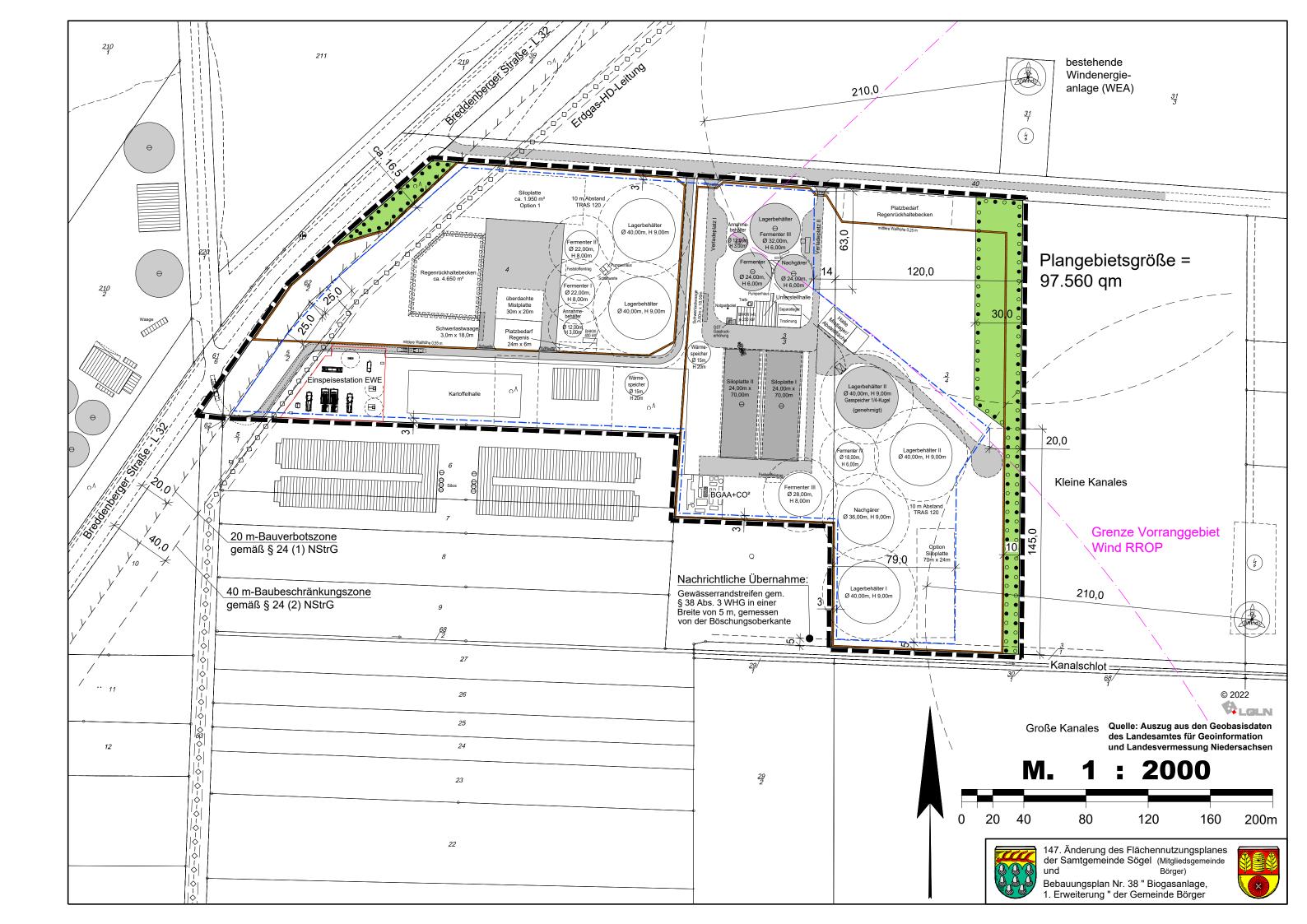
bei der Samtgemeindeverwaltung Sögel, Flur I. Obergeschoss, Ludmillenhof, 49751 Sögel zur Einsichtnahme ausliegen.

gez. Klaß


Aushang: 22.03.2024 Abnahme: 06.05.2024

Steuernummer: 53/200/29914


Sparkasse Emsland



147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel (Mitgliedsgemeinde und Börger)

Samtgemeinde Sögel, Gemeinde Börger Landkreis Emsland

147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel und Bebauungsplan Nr. 38 "Biogasanlage, 1. Erweiterung" der Gemeinde Börger

Beteiligung der Behörden und sonstigen Träger öffentlicher Belange gemäß § 4 (1) BauGB

Frühzeitige Beteiligung der Öffentlichkeit gemäß § 3 (1) BauGB

Grundzüge der Planung

1 Grundsätzliche Vorgaben

Der Geltungsbereich der 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel bzw. des Bebauungsplanes Nr. 38 der Gemeinde Börger liegt ca. 700 m nordöstlich der Ortslage Börger östlich der Breddenberger Straße (L 32). Im Norden wird das Gebiet durch einen Landwirtschaftsweg und im Südosten durch den "Kanalschlot", ein Gewässer III. Ordnung, begrenzt.

Die genaue Lage und Abgrenzung des Plangebietes ergibt sich aus der Darstellung in der jeweiligen Planzeichnung.

2 Planungsanlass / Planung

Das Plangebiet umfasst eine Größe von ca. 9,75 ha und ist im zentralen Bereich mit einer Lagerhalle und den Gebäuden und Anlagen einer Biogasanlage bebaut. Die Biogasanlage wurde auf Grundlage von § 35 BauGB als im Außenbereich privilegierte Anlage realisiert. Für einzelne geplante Anlagen (zusätzlicher Gärbehälter, Kartoffellagerhalle) wurden bereits Anträge gestellt bzw. liegen Genehmigungen vor.

Westlich der Landesstraße 32 schließt sich eine weitere Biogasanlage an. Diese ist Bestandteil des Bebauungsplanes Nr. 18 der Gemeinde Börger, welcher eine Fläche für Versorgungsanlagen "Biogasanlage" festsetzt. Die Anlage stellt über eine Fernwärmeleitung teilweise die Versorgung von öffentlichen Gebäuden im Gemeindegebiet sicher.

Die Betreiber der Biogasanlagen im bzw. angrenzend zum Plangebiet möchten ihre Biogasproduktion und die Fernwärmeversorgung ausweiten und das Biogas zu Biomethan aufbereiten. Für diesen Zweck soll die bestehende Biogasanlage im Gebiet u. a. um zusätzliche Behälter und eine Biomethanaufbereitungsanlage erweitert werden. Des Weiteren sollen innerhalb des Plangebietes eine weitere Biogasanlage, eine Kartoffellagerhalle und eine Aufbereitungsanlage errichtet werden. Das Gas soll anschlie-

ßend in das bestehende Gasnetz des regionalen Netzbetreibers eingespeist und dort als grundlastfähiger und CO₂ neutraler Energieträger genutzt werden.

Westlich der Landesstraße 32 befindet sich das Gelände des Schießplatzes der wehrtechnischen Dienststelle (WTD 91), weshalb eine Umsetzung der Planung westlich der L 32 im Anschluss an den Bebauungsplan Nr. 18 nicht möglich ist. Aus diesem Grund soll eine Erweiterung des Standortes östlich der L 32 erfolgen. Hier verläuft zudem eine Erdgastransportleitung der EWE Netz GmbH, sodass eine Einspeisemöglichkeit unmittelbar vor Ort gegeben ist. Eine entsprechende Einspeisestation soll im südwestlichen Bereich des Plangebietes errichtet werden (s. Lageplan).

Gleichzeitig soll die Fernwärmeleistung der Biogasanlage erhöht werden und den Fortbestand der gemeindlichen Wärmeversorgung sicherstellen. Vorgesehen ist der Ausbau von einer derzeitigen Teil- zu einer Vollversorgung.

Bei dem Plangebiet handelt es sich um Außenbereichsflächen im Sinne des § 35 BauGB, welche im Flächennutzungsplan der Samtgemeinde Sögel fast vollständig als Fläche für die Landwirtschaft dargestellt sind. Das geplante Vorhaben ist in seiner Gesamtheit jedoch nicht nach § 35 BauGB im Außenbereich privilegiert zulässig. Durch die geplante Ausweitung der Biogasproduktion und deren Veredelung sind die vorhandenen und geplanten Anlagen im Plangebiet zukünftig zumindest teilweise als nicht privilegierte, gewerbliche Biomasseanlagen einzustufen. Daher ist für das Vorhaben die Aufstellung eines Bebauungsplanes zur Ausweisung eines Sondergebietes "Biogasanlage" in Erweiterung des Bebauungsplanes Nr. 18 vorgesehen. Dabei sollen auch die vorhandenen bzw. bereits genehmigten Anlagen einbezogen und als Gesamtanlage berücksichtigt werden. Zur Vorbereitung wird zudem eine entsprechende Änderung des Flächennutzungsplanes der Samtgemeinde Sögel (147. FNP-Änderung) erforderlich. Diese sollen im Parallelverfahren aufgestellt werden.

3 Bestehende Nutzungen / Planungsvorgaben / Flächennutzungsplan

Klimaschutzplan 2050 und Klimaschutzgesetz der Bundesregierung, EEG 2023

Im November 2016 hat die Bundesregierung den Klimaschutzplan 2050 verabschiedet. Danach ist der Umbau der Energiewirtschaft zur Erreichung der Klimaschutzziele von zentraler Bedeutung. Vorgesehen ist, dass fossile Energieträger zunehmend durch erneuerbare ersetzt werden sollen.

Nach dem Klimaschutzgesetz (KSG) vom 12.12.2019, zuletzt geändert durch Art. 1 des Gesetzes vom 18.08.2021 (BGBl. I S. 3905), sollen die Emissionen bis 2030 um 65 Prozent gegenüber 1990 sinken und bereits 2045 die Treibhausgasneutralität erreicht werden.

Energie aus Biogas und Biomasse ist dabei gut speicherbar und bestens geeignet, um die schwankende Stromerzeugung aus Wind und Sonne auszugleichen und somit zur Stabilisierung der Energiesysteme beizutragen. Künftig soll daher noch mehr Bioenergie für Wärme, Strom und Kraftstoffe sorgen. Die Dringlichkeit dieser Zielsetzung hat nicht nur aufgrund des Klimawandels, sondern auch vor dem Hintergrund der aktuellen Entwicklung in Osteuropa nochmals gewonnen.

Zudem trägt die Landwirtschaft in Deutschland maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tier-

haltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch). Weitere erklärte Zielsetzung des Energiekonzeptes ist daher, diese Emissionen im Bereich der Landwirtschaft deutlich zu reduzieren.

Die Aufbereitung des erzeugten Biogases zu Biomethan (Erdgasqualität) kann in einer technisch sowie wirtschaftlich sinnvollen Weise zur Umsetzung dieser Zielsetzungen beitragen. Durch die verstärkte Nutzung von Wirtschaftsdünger als Inputstoff kann gleichzeitig ein Teil der Nährstoffproblematik reduziert und für die Umwelt und Natur in der Region ein Mehrwert geschaffen werden.

Auch nach dem aktuellen "Erneuerbare Energiengesetz" (EEG 2023), welches zum 1.1.2023 in Kraft getreten ist, wird in § 2 erneuerbaren Energien der Vorrang eingeräumt und der Grundsatz, dass die erneuerbaren Energien im überragenden öffentlichen Interesse liegen und der öffentlichen Sicherheit dienen, neu eingeführt. Nach dem EEG 2023 werden die Ausschreibungsmengen für die Förderung von Biomasse ab 2024 stufenweise reduziert, während jene für Biomethan ab 2023 erhöht werden. Die begrenzte Ressource Biomasse soll künftig verstärkt in schwer zu dekarbonisierenden Bereichen wie Verkehr und Industrie eingesetzt werden.

Ziele der Raumordnung (LROP und RROP)

Im Landesraumordnungsprogramm (LROP) Niedersachsen 2017 bzw. der Fortschreibung von 2022, welche mit Bekanntmachung vom 17.09.2022 in Kraft getreten ist (Nds. GVBI. S. 521), ist westlich der Breddenberger Straße (L 32) ein Vorranggebiet für die Trinkwassergewinnung dargestellt. Das Plangebiet selbst ist ohne besondere Darstellung.

Im Regionalen Raumordnungsprogramm des Landkreises Emsland (RROP 2010) ist der Bereich östlich der Breddenberger Straße als Vorbehaltsgebiet für die Erholung und der nördliche und östliche Teil des Plangebietes als Vorbehaltsgebiet für die Landwirtschaft, aufgrund des hohen Ertragspotenzials, dargestellt.

Für die Abwägung bedeutet die Darstellung eines Vorbehaltsgebietes, dass dieser Belang ein besonderes Gewicht hat und so weit wie möglich berücksichtigt werden soll. Es hat jedoch nicht den grundsätzlichen Ausschluss entgegenstehender Nutzungsarten zur Folge.

Die Breddenberger Straße (L 32) ist als Hauptverkehrsstraße von regionaler Bedeutung dargestellt. Östlich verläuft nach den Darstellungen im RROP parallel zur Straße eine Gasfernleitung, welche im südwestlichen Bereich des Plangebietes nach Süden verschwenkt.

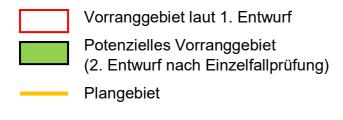
Der Bereich westlich der L 32 ist als Vorranggebiet für die Trinkwassergewinnung und als Vorranggebiet für besondere öffentliche Zwecke (Sperrgebiet des Schießplatz Meppen der WTD 91) dargestellt.

Das RROP 2010 im Emsland macht Vorgaben für die Festlegung möglicher Standorte für Biomasseanlagen. Danach ist eine Raumverträglichkeit für nicht privilegierte, gewerbliche Biomasseanlagen nur gegeben, wenn sie mit der Funktion des jeweiligen Bereiches vereinbar sind und eine ausreichende Verkehrsanbindung vorhanden ist

sowie das Orts- und Landschaftsbild, bedeutende Teile der Kulturlandschaft oder Funktionen des Arten- und Biotopschutzes nicht erheblich beeinträchtigt werden. Eine Raumverträglichkeit setzt zudem voraus, dass sie an die vorhandenen Ortslagen oder die bauleitplanerisch gesicherten Bereiche räumlich angrenzen, d.h. sie sind vornehmlich bauleitplanerisch ausgewiesenen Gewerbe- und Industriegebieten zuzuordnen (RROP Abschnitt 4.9, Ziffer 07, Satz 1-4).

Im vorliegenden Fall sind im Gebiet bzw. angrenzend zwei Biogasanlagen vorhanden, von denen die Anlage westlich der L 32 bereits bauleitplanerisch verbindlich gesichert und als Fläche für Versorgungsanlagen "Biogasanlage" festgesetzt ist. Das vorliegende Plangebiet schließt unmittelbar östlich der Landesstraße an.

Die im Gebiet vorhandene Biogasanlage ist verkehrlich über eine unmittelbar nördlich verlaufende Wegetrasse erschlossen, welche im nordwestlichen Bereich in die Breddenberger Straße (L 32) einmündet. Eine weitere Anbindung besteht ausgehend von der Breddenberger Straße im südwestlichen Bereich des Plangebietes über die Zuwegung zu den angrenzend vorhandenen Tierhaltungsanlagen des Betreibers. Diese kann und soll für die Anbindung der geplanten Einspeisestation genutzt werden. Eine ausreichende Verkehrsanbindung ist somit gegeben.


Durch die geplante Erweiterung werden die vorhandenen Biogasanlagen stärker miteinander verbunden. Durch den höheren Einsatz von Wirtschaftsdünger kann ein energetisch sinnvoller und ökologisch nachhaltiger Beitrag zur Reduzierung der Nährstoffproblematik auf landwirtschaftlichen Flächen, insbesondere im Hinblick auf die Änderungen in der Düngemittelverordnung (letzte Anpassung vom 31.5.2023) geleistet und das Trinkwasser vor Stickstoff- und Ammoniumverbindungen geschützt werden. Darüber hinaus kann die Anlage dazu dienen, für die beteiligten landwirtschaftlichen Betriebe weitere Einnahmequellen bzw. eine Verbesserung der Wirtschaftsbedingungen zu schaffen.

Die Planung trägt auch zu den im RROP im Teilbereich Energie (Kap. 4.9, Ziffer 01) genannten Zielen und Grundsätzen bei:

"Die Energiegewinnung und -verteilung im Planungsraum hat so zu erfolgen, dass die Versorgungssicherheit, die Preisgünstigkeit, Verbraucherfreundlichkeit, Effizienz und Umweltverträglichkeit unter Berücksichtigung örtlicher Energiepotenziale gewährleistet bleibt. Gleichzeitig ist sie so auszurichten, dass die Möglichkeiten der Energieeinsparung sowie der wirtschaftlichen und umweltverträglichen Energiegewinnung ausgeschöpft werden."

Aktuell erarbeitet der Landkreis Emsland eine Neuaufstellung des RROP, bei dem die Planungen zur Steuerung der Windenergienutzung prioritär behandelt werden. Im 1. Entwurf ist der Bereich des Windparks Börger-Ohe östlich des Plangebietes als Vorranggebiet Windenergie dargestellt.

Im 2. Entwurf (Stand 2015) ist nach Einzelfallprüfung die Erweiterung des Windparks Börger-Ohe 2 berücksichtigt. Die danach für die Festlegung als potenzielles Vorranggebiet Windenergie vorgesehenen Flächen umfassen auch den östlichen Teil des Plangebietes. Die geplante Abgrenzung ist im Lageplan dargestellt. Dieser Bereich ist teilweise bereits mit den Anlagen der Biogasanlage bebaut, welche bei der Festlegung von Schutz-/Vorsorgeabständen nicht als Belang berücksichtigt sind. Das neue RROP soll Ende 2025/Anfang 2026 endgültig verabschiedet werden.

Quelle: Landkreis Emsland, 2. RROP-Entwurf (2015)

In einem Vorranggebiet müssen alle raumbedeutsamen Planungen und Vorhaben in dem betreffenden Gebiet mit dem vorrangigen Ziel vereinbar sein. Im vorliegenden Fall wurde die Erweiterung des Windparks Börger-Ohe 2 bereits umgesetzt. Die nächsten Windenergieanlagenstandorte befinden sich nord- und südöstlich außerhalb des Plangebietes. Zu den Standorten der Windenergieanlagen ist nach Auskunft des Landkreises aus Gründen der Gefahrenabwehr mit gasführenden baulichen Anlagen ein Abstand von 1 H (Höhe = 210 m) zu berücksichtigen. Dies wird bei der Planung beachtet (s. Lageplan) und in den Bebauungsplan ein entsprechender Hinweis aufgenommen.

Da mit der vorliegenden Planung das geplante Vorranggebiet Windenergie nicht beeinträchtigt und die Ziele und Grundsätze des RROP zum Teilbereich Energie im Übrigen unterstützt werden und das Plangebiet gleichzeitig an einen bauleitplanerisch verbindlich gesicherten Bereich räumlich angrenzt, kann daher nach Auffassung der Samtgemeinde Sögel bzw. der Gemeinde Börger die vorliegende Planung durchgeführt werden.

<u>Darstellungen im Flächennutzungsplan</u>

Bebauungspläne sind gemäß § 8 Abs. 2 BauGB, aus dem Flächennutzungsplan zu entwickeln.

Im wirksamen Flächennutzungsplan (FNP) der Samtgemeinde Sögel sind die Flächen im Plangebiet als Fläche für die Landwirtschaft dargestellt., Parallel zum Bebauungsplan wird daher auch der Flächennutzungsplan der Samtgemeinde durch Darstellung eines Sondergebietes "Biogas" geändert (147. Flächennutzungsplanänderung).

Die Breddenberger Straße (L 32) ist als Hauptverkehrsstraße dargestellt, zu der parallel an der Nordwestseite ein Grünstreifen verläuft. Die westlich daran angrenzende Biogasanlage ist als Fläche für Versorgungsanlagen "Gas" dargestellt.

Örtliche Gegebenheiten

Das Plangebiet ist im zentralen Bereich mit einer Lagerhalle und den Gebäuden und Anlagen einer Biogasanlage bebaut. Südlich der Biogasanlage sind Siloplatten ange-

ordnet. Die Anlagen sind größtenteils durch Verwallungen zu den umliegenden Nutzungen abgegrenzt. Westlich der Biogasanlage befindet sich eine Lagerhalle.

Die Nutzungen sind über eine nördlich angrenzend verlaufende Wegetrasse erschlossen. Diese ist im Westen abschnittsweise von Gehölzen gesäumt und mündet unmittelbar nordwestlich des Plangebietes in die Breddenberger Straße ein (L 32). Nach Osten erschließt die Wegetrasse im weiteren Verlauf dort vorhandene Windkraftanlagen. Die Landesstraße wird größtenteils ebenfalls von Gehölzstreifen begleitet und begrenzt das Plangebiet nach Nordwesten.

Die Flächen westlich und östlich der vorhandenen baulichen Anlagen werden fast vollständig ackerbaulich genutzt.

Südlich der Biogasanlage befindet sich außerhalb des Plangebietes eine Gehölzfläche und südöstlich verläuft angrenzend der "Kanalschloot", ein Graben III. Ordnung. Im Südwesten schließen sich Tierhaltungsanlagen der Betreiber an.

Westlich der Breddenberger Straße schließt sich das Gebiet des Bebauungsplanes Nr. 18 an, welcher für die dort vorhandene Biogasanlage eine Fläche für Versorgungsanlagen festsetzt.

Im Übrigen ist das Gebiet von landwirtschaftlich genutzten Flächen umgeben.

Die nächste, südwestlich innerhalb der Ortslage von Börger gelegene Wohnbebauung hält Abstände von über 700 m zum Plangebiet ein.

4 Erschließung und Versorgung

Verkehrserschließung

Die vorhandene Biogasanlage ist verkehrlich über eine nördlich angrenzend verlaufende Wegetrasse erschlossen, welche nordwestlich des Plangebietes in die Breddenberger Straße (L 32) einmündet. Diese Wegetrasse erschließt nach Osten auch die dort vorhandenen Windkraftanlagen und Landwirtschaftsflächen.

Eine weitere Anbindung für das Plangebiet besteht ausgehend von der Breddenberger Straße im südwestlichen Bereich des Plangebietes über die Zuwegung zu den angrenzend vorhandenen Tierhaltungsanlagen des Betreibers. Über diese soll separat die im südwestlichen Bereich des Plangebietes vorgesehene Einspeisestation der EWE erschlossen werden.

Ver- und Entsorgung

Das Plangebiet ist bereits in Teilen bebaut bzw. versiegelt. Die vorhandenen baulichen Nutzungen sind, soweit erforderlich, technisch erschlossen (Strom, Wasser, Gas). Für die ergänzend geplanten Anlagen dürfte daher der Anschluss an vorhandene Erschließungsanlagen möglich sein.

Für Hausabwässer ist bei Bedarf die Entsorgung über eine Kleinkläranlage vorzusehen. Ein Anschluss an die zentrale Abwasserbeseitigung ist nicht erforderlich.

Für optional vorgesehene Gärrestetrocknungsanlagen kann der im Trocknungsprozess entstehende Wasserdampf entweichen.

Das Oberflächenwasser versickert, sofern es nicht als Brauchwasser genutzt wird, vor Ort bzw. wird für die bestehende Biogasanlage in einem Becken gesammelt und auf landwirtschaftliche Flächen ausgebracht. Diese Regelung soll auch für die weiteren geplanten Anlagen Anwendung finden, wobei für die beiden geplanten Biogasanlagen separate mit Folien ausgelegte Regenrückhaltebecken angelegt werden sollen.

Schädlich verunreinigtes Niederschlagswasser der Biogasanlage ist aufzufangen und ordnungsgemäß, z.B. durch Ableitung in die Biogasanlage, zu entsorgen.

Erdgasleitung

Das Plangebiet wird im westlichen Bereich von einer Erdgashochdruckleitung der EWE Netz GmbH durchquert, welche mit einem Schutzstreifen von beidseitig 4 m zu berücksichtigen ist. Der Trassenverlauf wurde im südwestlichen Bereich des Plangebietes im Bereich der geplanten Einspeisestation eingemessen. Sämtliche Maßnahmen im Schutzstreifen der Erdgastransportleitung bedürfen der Zustimmung und Einweisung des Leitungsträgers.

5 Umweltsituation und Auswirkungen der Planung

Immissionssituation

Das Plangebiet ist im zentralen Bereich mit den Gebäuden und Anlagen einer Biogasanlage bebaut. Nordwestlich befindet sich eine weitere Biogasanlage und südlich angrenzend befinden sich Tierhaltungsanlagen der Betreiber. Im Planbereich ist in Bezug auf Geruchsimmissionen somit eine Vorbelastung gegeben. Die Verträglichkeit der Anlagen mit den umliegend vorhandenen Nutzungen wurde im Rahmen der jeweiligen Baugenehmigung geprüft.

Durch die Planung soll die Biogasproduktion im Plangebiet ausgeweitet und ergänzend die Errichtung einer Biomethangasaufbereitungsanlage ermöglicht werden.

Die nächstgelegenen Wohngebäude, auf die sich die Planung auswirken kann, befinden sich in einer Entfernung von über 700 m südwestlich des Plangebietes.

Das Plangebiet selbst soll als Sondergebiet auch zukünftig mit den Gebäuden und Anlagen der Biogasanlagen und der Aufbereitungsanlage rein gewerblich genutzt werden. Im Gebiet entstehen somit keine sensiblen Nutzungen, wie z.B. Wohngebäude oder Büro- bzw. Aufenthaltsräume, deren Schutzanspruch bei der Planung zu berücksichtigen wären.

a) Lärmemissionen (Anlage 1)

Um zu klären, ob die schalltechnischen Anforderungen der DIN 18005 bzw. der Technischen Anleitung für Lärm (TA Lärm) in Bezug auf die nächstgelegene vorhandene bzw. mögliche schutzwürdige Wohnbebauung eingehalten werden, ist von der nts Ingenieurgesellschaft, Münster, ein schalltechnischer Bericht erarbeitet worden (Anlage 1, Bericht Nr. S07230022-1 vom 20.10.2023).

<u>Das Gutachten berücksichtigt dabei die vorhandenen und konkret geplanten Anlagen</u> (Gesamtbetrieb) und stellt eine Machbarkeitsprüfung dar, ob eine Realisierung des Vorhabens aus schalltechnischer Sicht möglich ist.

In diesem Zuge wurden die Geräuschemissionen der vorhandenen Anlagen im Plangebiet im Rahmen eines Messtermins am 24.08.2023 erfasst. Die Daten wurden, wie auch die weiteren geplanten Anlagen, in ein dreidimensionales Berechnungsmodell eingestellt. Zudem wurden auch die Kfz-Verkehre und deren Verladetätigkeiten in die Berechnungen eingestellt (s. Kap. 3.1 des Gutachtens).

Als maßgebliche Immissionsorte wurden die nächsten, südwestlich innerhalb ausgewiesener allgemeiner Wohngebiete gelegenen Wohngebäude berücksichtigt (IO 1 und IO 2). Darüber hinaus wurde auch eine mögliche weitere Wohnbauentwicklung beidseitig der L 32 im nördlichen Anschluss der Ortslage berücksichtigt (IO 3). Für diese potenzielle Wohnbebauung reduziert sich der Abstand zum Plangebiet auf ca. 540 m.

Der Orientierungswert der DIN 18005 "Schallschutz im Städtebau" (Stand: Juli 2023) für allgemeine Wohngebiete beträgt 55/40 dB(A) tags/nachts.

Bei den Berechnungen wurden zwei Betriebssituationen (Regelbetrieb + Maisernte sowie Regelbetrieb + Gärrestabfuhr) dargestellt. Die dargestellten Situationen stellen dabei nach Betreiberangaben die obere Erwartungsgrenze dar, da u.a. die Anlieferung von Silage und die Abholung der Gärreste nur an wenigen Tagen des Jahres und jeweils nicht parallel erfolgt. Eine parallele Maisernte im Bereich beider Biogasanlagen ist ebenfalls nicht möglich (u.a. Ressourcentechnisch). Im Sinne einer schalltechnischen Maximalbetrachtung wurde die Maisernte daher für den näher zu den Immissionsorten gelegenen Betriebsbereich berücksichtigt.

Die Berechnungen ergeben, dass durch die Betriebsgeräusche der Gesamtanlage die Immissionsrichtwerte der TA Lärm im Nachtzeitraum im Bereich der potenziell möglichen Wohnbaufläche um mind. 7 dB(A) unterschritten werden. An der bestehenden Wohnbebauung ergeben sich bereits Unterschreitungen von 10 dB(A). Während der Tagzeit ergeben sich weitergehende Unterschreitungen von 19-23 dB(A) (s. Tabelle 7 des Gutachtens).

Bei einer Unterschreitung der Immissionsrichtwerte um mindestens 6 dB(A) ist die von der Anlage ausgehende Zusatzbelastung am maßgeblichen Immissionsort nach der TA Lärm als irrelevant anzusehen. In diesem Fall ist eine Ermittlung der Vorbelastung durch weitere einwirkende Anlagen, für die die TA Lärm gilt, nicht erforderlich.

Bei einer Unterschreitung um 10 dB(A) und mehr befinden sich die Immissionspunkte bereits nicht mehr im schalltechnischen Einwirkungsbereich der untersuchten Anlage. Bei einer Unterschreitung um 15 dB(A) und mehr ist auch das Irrelevanzkriterium der DIN 45691 "Geräuschkontingentierung" (Dez. 2006) erfüllt.

Von der Gesamtanlage gehen somit keine unzulässigen Lärmemissionen aus.

b) Geruchsemissionen (Anlage 2)

Für die Planung wurden die zu erwartenden Geruchssituation durch die FIDES Immissionsschutz & Umweltgutachter GmbH, Lingen nach Anhang 7 der TA Luft ermittelt (s. Anlage 2, Bericht Nr. GS23110.1+2/01 vom 25.01.2024).

Als relevante Immissionspunkte sind dabei alle innerhalb der 2 % - Geruchsstundenhäufigkeit (2 %-Isolinie) und des 600 m Radius um den Betrieb gelegenen Immissionsorte zu betrachten. Bei einer Unterschreitung des Immissionsbeitrags von 2 % (d.h. erkennbarer Geruch an bis zu 2 % der Jahresstunden) ist davon auszugehen, dass

die Anlage die belästigende Wirkung der vorhandenen Belastung nicht relevant erhöht (Irrelevanzgrenze).

Im vorliegenden Fall wurden, außer den südlich vorhandenen Wohngebieten, auch die daran im nördlichen Anschluss geplanten wohnbaulichen Entwicklungsflächen der Gemeinde sowie, östlich davon, eine mögliche gewerbliche Entwicklung berücksichtigt (s. Anlage 1 des Gutachtens).

Die TA Luft enthält für verschiedene Baugebietsarten Immissionswerte zur Beurteilung einer im Regelfall erheblichen Belästigung gemäß § 3 Abs. 1 BImSchG. Der Richtwert für Wohn- und Mischgebiete beträgt eine Geruchseinheit (GE) pro cbm Luft (erkennbarer Geruch) an bis zu 10 % der Jahresstunden (Immissionswert IW = 0,10). Für Dorfgebiete, Gewerbe- und Industriegebiete sind Geruchsimmissionen an bis zu 15 % der Jahresstunden zulässig (IW= 0,15).

Die zu erwartenden Geruchsemissionen von der geplanten erweiterten Gesamtanlage gehen größtenteils von der Substratlagerung (Silage, Mist) und Gülleanlieferung aus. Die Silagemieten werden, bis auf den Entnahmebereich, abgedeckt. Die Mistlager sollen zukünftig, wie auch die Gärresteseparation, innerhalb von Hallen zwischengelagert werden, welche von 3 Seiten umschlossen werden.

Die Gär- und Lagerbehälter sind mit einer Gasspeicherfolie verschlossen. Die Gülle wird mit Tankfahrzeugen in die Güllevorlagebehälter der Anlage eingebracht. Die Gärreste sollen mit Saugtankwagen abgefahren und teilweise einer ackerbaulichen Verwertung zugeführt werden. Optional sollen im Plangebiet zwei Anlagen für eine Gärresttrocknung entstehen können. Diese Anlagen wurden daher in der Untersuchung mit den nach TA Luft maximal zulässigen Geruchsstoffströmen berücksichtigt.

Bei einer Verbrennung des Biogases im BHKW werden die organischen Kohlenstoffverbindungen in geruchsloses Kohlendioxid und Wasser umgewandelt. Die Geruchsimmissionen der Abluft sind im Sinne des Anhangs 7 der TA Luft nicht vom typischen Geruch von Hausbrand oder Kfz abgrenzbar und wurden, auch aufgrund der großen Entfernung zu den nächstgelegenen Immissionsorten, nicht berücksichtigt. Dies gilt auch für die Abgasgerüche der thermischen Abgasreinigungsanlage (RTO - Anlage).

Zudem flossen die Geruchsemissionen der nordwestlich bestehenden Biogasanlage sowie vorhandene Tierhaltungsanlagen der Betreiber südlich des Plangebietes mit ein und es wurde die Gesamtbelastung an Geruchsemissionen im genehmigten Bestand sowie in der geplanten Situation dargestellt und verglichen.

Nach den Ermittlungen des Gutachters wird durch die genehmigten Bestandsanlagen der nach der TA Luft maßgebliche Immissionswert von 10 % der Jahresstunden (IW 0,10) sowohl an den bestehenden Wohngebieten sowie an den südlich gelegenen Entwicklungsflächen für Wohnen eingehalten. Auch für die östlich daran vorgesehenen gewerblichen Entwicklungsflächen wird der Immissionswert von 0,15 eingehalten.

An den südwestlich vorgesehenen wohnbaulichen Entwicklungsflächen wird ein Immissionswert von 13 % erreicht.

In begründeten Einzelfällen ist entsprechend Nr. 3.1 Abs. 5 Anhang 7 TA Luft die Festlegung von Zwischenwerten zwischen den Nutzungsbereichen möglich. Im Übergangsbereich von Wohngebieten zum Außenbereich mit Tierhaltungsanlagen können Zwischenwerte von bis zu 14 % als angemessen betrachtet werden. Mit der ermittel-

ten Gesamtbelastung von 13 % wäre eine Ausweisung von Wohngebietsflächen südwestlich des Plangebietes somit grundsätzlich möglich.

Die Ermittlungen erfolgten mit der Maßgabe, dass sich die Geruchsimmissionssituation an den maßgeblichen Immissionsorten durch die vorliegende Planung nicht verändern darf.

Nach den Ermittlungen befinden sich die nächstgelegenen Wohnhäuser noch in einer Entfernung von über 600 m und die geplanten wohnbaulichen Entwicklungsflächen in einer Entfernung von ca. 400 m südwestlich der 2 %-Isolinie. Ein Geruchsbeitrag von max. 2 % gilt, wie bereits ausgeführt, nach Kap.3.3 der TA Luft in der Regel als nicht erheblich (Irrelevanzkriterium nach TA Luft, s. Anlage 4.1 des Gutachtens). Bei der Betrachtung einer Gesamtanlage ist die Irrelevanzgrenze dabei ohne Berücksichtigung einer Vorbelastung anzuwenden.

Durch die Anlagen im Plangebiet wird danach im Bereich der südlich gelegenen Entwicklungsgebiete eine Gesamtzusatzbelastung an Geruchsimmissionen von max. 1 % erreicht (Anlage 4.2 des Gutachtens) und damit auch das Irrelevanzkriterium nach Anhang 7 der TA Luft eingehalten.

Bei Berücksichtigung der Vorbelastung ergibt sich durch die Überlagerung mit Geruchsfahnen der vorhandenen benachbarten Betriebe keine Veränderung der vorhandenen Gesamtbelastung an den südlich gelegenen Entwicklungsgebieten der Gemeinde Börger (s. Anlage 5.3 des Gutachtens). Die Bedingung, dass die Gesamtbelastung an Geruchsimmissionen im Bereich der bestehenden und geplanten Wohngebietsflächen südlich und südwestlich des Plangebietes nicht verändert wird, kann somit eingehalten werden.

Um dies sicher zu gewährleisten, wird der nach den Ermittlungen an den maßgeblichen Immissionsorten zulässige Geruchsstundenanteil aus dem Plangebiet im Bebauungsplan festgesetzt.

Durch die unmittelbar benachbart zum Plangebiet bestehenden weiteren Anlagen der Betreiber (Biogasanlage, Masthähnchenställe) mit vergleichbaren Geruchsarten, können die im Plangebiet auftretenden Gerüche nicht den einzelnen Anlagen zugeordnet und unterschieden werden. Arbeitnehmer sind somit vergleichbaren Gerüchen aus der eigenen Tätigkeit und aus den benachbarten Anlagen ausgesetzt. Durch die benachbarten Anlagen werden für die Arbeitnehmer somit keine zusätzlichen Belästigungen, als durch die eigene arbeitsplatzbezogene Tätigkeit bereits gegeben, hervorgerufen.

c) Ammoniak/Stickstoffdeposition (Anlage 2)

Für das Vorhaben wurden auch die durch die Anlagen zu erwartenden Ammoniakemissionen und Stickstoffdeposition ermittelt, um zu prüfen, ob der Schutz vor erheblichen Nachteilungen durch Schädigung empfindlicher Pflanzen und Ökosystem durch Ammoniak als auch erhebliche Beeinträchtigungen eines Gebietes von gemeinschaftlicher Bedeutung (FFH-Gebiet) ausgeschlossen werden können.

Die Berechnungen ergeben, dass sich im Bereich der als nicht relevant zu betrachtenden Ammoniak Zusatzbelastung von 2 μ g/m³ (Mikrogramm pro Kubikmeter) als auch einer Stickstoffdeposition von 5 kg/(ha · a) (Kilogramm pro Hektar) keine Waldflächen befinden (Anlage 6 des Gutachtens).

Innerhalb der Isolinie einer Stickstoffdeposition von 0,3 kg / ha • a befinden sich auch keine FFH-relevanten Lebensraumtypen bzw. stickstoffempfindlichen Biotope (Anlage 7 des Gutachtens).

Eine erhebliche Beeinträchtigung von Waldflächen oder empfindlichen Ökosystemen durch das Vorhaben kann demnach ausgeschlossen werden.

Störfall-Verordnung (12. BlmSchV)

Biogas ist als hochentzündlicher Stoff ein Stoff nach Nr. 8 des Anhangs I der Störfallverordnung (12. BlmSchV). Die StörfallVO findet Anwendung, wenn bestimmte Lagermengen überschritten werden. Für Anlagen, die der 12. BlmSchV (Störfallverordnung) unterliegen, sind ggf. bereits in der Bauleitplanung Achtungsabstände zu schutzbedürftigen Nutzungen zu berücksichtigen.

Biogas fällt unter die Nummer 1.2.2 (entzündbare Gase, Kategorie 1 oder 2) mit einer Mengenschwelle von 10.000 kg sowie aufgrund des Schwefelwasserstoffes unter die Nummer 1.1.2 (Akut toxisch, Kategorie 2) des Anhangs I StörfallVO. Befinden sich also in einer Biogasanlage 10.000 kg Biogas oder mehr, unterliegt diese der Störfall-Verordnung. Befinden sich mehr als 50.000 kg in der Anlage, ist es ein Betriebsbereich der oberen Klasse mit erweiterten Pflichten für den Betreiber.

Die Einstufung unter Nummer 1.2.2 gilt jedoch nicht für auf Erdgasqualität aufbereitetes Biogas (also: Biomethan). Dieses wird störfallrechtlich der Nr. 2.1 des Anhangs I der Störfall-Verordnung zugeordnet mit der Folge, dass die Mengenschwelle hierfür bei 50.000 kg liegt.

Die nordwestlich gelegene Biogasanlage unterliegt der Störfall-Verordnung (12. BIm-SchV). Mit den geplanten Erweiterungen und der Nutzungsergänzung gilt dies auch für die Anlagen im Plangebiet.

Für das geplante Vorhaben wird derzeit daher eine sicherheitstechnische Untersuchung nach § 29a BlmSchG durchgeführt. Das Ergebnis geht im weiteren Verfahren in die Planung ein.

Windenergieanlagen

Östlich und nordöstlich des Plangebietes befindet sich der Windenergiepark Börger-Ohe 2. Zu den Standorten der Windenergieanlagen (WEA) ist aus Gründen der Gefahrenabwehr mit gasführenden baulichen Anlagen ein Abstand von 210 m einzuhalten.

Dieser Abstand wird durch die vorhandene Biogasanlage unterschritten, für die ergänzend geplanten baulichen Anlagen wird diese Bedingung jedoch berücksichtigt und es werden innerhalb des Schutzabstandes keine gasführenden Anlagen vorgesehen.

Natur und Landschaft

Das Plangebiet ist in Teilen mit den Gebäuden und Anlagen einer Biogasanlage bebaut und durch Zufahrten und Hofflächen versiegelt. Für die Ausweitung der Biogasproduktion und die ergänzend geplante Aufbereitungsanlage sowie die Einspeisestation werden weitere, bislang landwirtschaftlich genutzte Flächen für eine Bebauung herangezogen.

Im Rahmen der Umweltprüfung wird eine detaillierte Biotoptypenkartierung erstellt und eine Eingriffsbilanz nach der "Arbeitshilfe zur Ermittlung von Ausgleichs- und Ersatzmaßnahmen in der Bauleitplanung des Niedersächsischen Städtetages" (2013) durchgeführt.

Für das Plangebiet werden zudem derzeit bereits faunistische Bestandsaufnahmen zur Artengruppe der Brutvögel durchgeführt. Die Ergebnisse fließen in die weitere Planung mit ein.

6 Weiteres Verfahren

Die betroffenen Behörden und sonstigen Träger öffentlicher Belange werden von der Planung unterrichtet und im Rahmen dieser frühzeitigen Beteiligung wird der Umfang und Detaillierungsgrad der im Rahmen der Bauleitplanung erforderlichen Umweltprüfung abgestimmt. Anschließend erfolgt die öffentliche Auslegung gemäß § 3 Abs.2 BauGB und die Beteiligung der Behörden und sonstigen Träger öffentlicher Belange gemäß § 4 Abs.2 BauGB.

Folgende Untersuchungen und Fachbeiträge liegen vor:

- Schalltechnischer Bericht (Anlage 1)
- Immissionsschutztechnischer Bericht (Geruch, Ammoniak, Stickstoff Anlage 2)

Folgende Untersuchungen und Fachbeiträge werden im weiteren Verfahren ergänzt:

- Sicherheitstechnische Untersuchung nach § 29 a BImSchG
- Naturschutzrechtliche Eingriffsbilanzierung
- Biotoptypenkartierung
- Faunistische Kartierungen (Brutvögel)
- Umweltbericht

147. Flächennutzungsplanänderung der Samtgemeinde Sögel

Bebauungsplan Nr. 38 der Gemeinde Börger

- Schalltechnischer Bericht -

Im Auftrag der W & S Bioenergie GmbH & Co. KG

Schalltechnisches Gutachten

Bericht Nr. S07230022-1

147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel und Aufstellung des Bebauungsplanes Nr. 38 "Biogasanlage, 1. Erweiterung" der Gemeinde Börger

Schalltechnisches Gutachten

Bericht Nr.: S07230022-1

Projekt: 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel und Auf-

stellung des Bebauungsplanes Nr. 38 "Biogasanlage, 1. Erweiterung" der Ge-

meinde Börger

Umfang: Textteil 33 Seiten

Anhang 61 Seiten

Datum: 20.10.2023

Auftraggeber

W & S Bioenergie GmbH & Co. KG Dosfelder Straße 7 26904 Börger

Auftragnehmer

nts Ingenieurgesellschaft mbH Hansestraße 63 48165 Münster T. 025 01 / 27 60-0 F. 025 01 / 27 60-33 info@nts-plan.de www.nts-plan.de

Verfasser

Christian Schmitz
B. Eng.
T. 0 25 01 / 27 60-130
christian.schmitz@nts-plan.de

Inhalt

Zusamme	nfassung	5
1.	Vorhabenbeschreibung und Aufgabenstellung	7
1.1.	Beschreibung des Vorhabens	7
1.2.	Aufgabenstellung	7
2.	Grundlagen für die schalltechnische Beurteilung	9
3.	Ermittlung der Geräuschemissionen	12
3.1.	Betriebsbeschreibung	12
3.2.	Messprotokoll	14
3.3.	Emissionsansätze	15
3.3.1.	Schallübertragung von Räumen ins Freie	15
3.3.2.	Technische Geräuschquellen	17
3.3.3.	Betriebsverkehre	20
4.	Ermittlung der Geräuschimmissionen	23
5.	Berechnungsergebnisse und Beurteilung der Geräuschimmissionen	25
6.	Angaben zur Qualität der Prognose	27
7.	Grundlagenverzeichnis	28
8.	Abkürzungen und Begriffe	30

Tabellen

Tabelle 1:	Gebietsnutzung und Immissionsrichtwerte der TA Lärm9
Tabelle 2:	Immissionsorte (IO), Gebietsnutzungen und Immissionsrichtwerte (IRW) der TA Lärm11
Tabelle 3:	Auflistung der relevanten Geräuschquellen und Betriebsverkehre für einen Betriebstag
Tabelle 4:	Rauminnenpegel in den schalltechnisch relevanten Betriebsräumen
Tabelle 5:	Bau-Schalldämm-Maße der Umfassungsbauteile
Tabelle 6:	Geräuschemissionen stationärer technischer Geräuschquellen
Tabelle 7:	Immissionsrichtwerte und Beurteilungspegel nach TA Lärm
Abbild	ungen
Abbildung 1:	Übersichtslageplan
Abbildung 2:	Übersichtslageplan mit Darstellung der betrachteten Immissionsorte11
Anhän	ge
Anhang 1:	Emissionsquellenplan
Anhang 2:	Berechnung der Geräuschemissionen - Situation Regelbetrieb mit Abholung Gärrest
Anhang 3:	Berechnung der Geräuschimmissionen - Situation Regelbetrieb mit Abholung Gärrest
Anhang 4:	Beurteilungspegel - Situation Regelbetrieb mit Abholung Gärrest
Anhang 5:	Berechnung der Geräuschemissionen - Situation Regelbetrieb mit MaisernteA-33
Anhang 6:	Berechnung der Geräuschimmissionen - Situation Regelbetrieb mit MaisernteA-41
Anhang 7:	Beurteilungspegel - Situation Regelbetrieb mit Maisernte

Zusammenfassung

Die W & S Bioenergie GmbH & Co. KG betreibt an der Breddenberger Straße in 26904 Börger eine Biogasanlage, welche u. a. um zusätzliche Behälter und um eine Biomethanaufbereitungsanlage erweitert werden soll. Des Weiteren soll innerhalb des Plangebietes eine weitere Biogasanlage, eine Kartoffellagerhalle und eine Einspeiseanlage errichtet werden. Zur Schaffung der planungsrechtlichen Grundlagen für diese Erweiterungsmaßnahmen ist die 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel und die Aufstellung des Bebauungsplanes Nr. 38 "Biogasanlage, 1. Erweiterung" der Gemeinde Börger erforderlich.

Im Rahmen des Bauleitplanverfahrens wurde die nts Ingenieurgesellschaft mbH vom Anlagenbetreiber der bestehenden Biogasanlage mit der Durchführung einer schalltechnischen Untersuchung beauftragt. In dieser war nachzuweisen, dass an der bestehenden schutzwürdigen Bebauung in der Nachbarschaft des Betriebsgrundstücks die geltenden Immissionsrichtwerte der Technischen Anleitung zum Schutz gegen Lärm (TA Lärm) durch die Betriebsgeräusche des geplanten Gesamtbetriebes - auch unter Berücksichtigung der vorliegenden Gewerbelärmvorbelastung durch die weiteren im Umfeld des Betriebsgeländes gelegenen gewerblichen und industriellen Anlagen - nicht überschritten werden.

Grundlage für die nachfolgende Beurteilung bildet die im vorliegenden Bericht dokumentierte Schallimmissionsprognose unter Zugrundelegung der angegebenen Betriebsbeschreibung, der ermittelten und angesetzten Geräuschemissionen sowie der örtlichen und topografischen Verhältnisse.

Die durchgeführte schalltechnische Untersuchung zu diesem Vorhaben hat ergeben, dass durch die geplante Gesamtanlage bei einer Beurteilung nach TA Lärm im Bereich der nächstgelegenen Nachbarschaft keine unzulässigen Geräuschimmissionen zu erwarten sind. Die Immissionsrichtwerte gemäß TA Lärm werden im Tages- und Nachtzeitraum anteilig um mindestens 7 dB unterschritten.

Somit liefert der untersuchte Betrieb im Sinne der Nr. 3.2.1 der TA Lärm keinen relevanten Beitrag zur Gesamtgewerbelärmsituation im Tages- und Nachtzeitraum. Eine Betrachtung der Geräuschvorbelastung durch weitere Anlagen, die der TA Lärm unterliegen, ist nach Nr. 3.2.1 der TA Lärm bei den gegebenen Unterschreitungen der Richtwerte nicht erforderlich.

Im Rahmen der schalltechnischen Untersuchung wurde auch geprüft, ob eine Überschreitung der geltenden Immissionsrichtwerte (s. Kapitel 2) durch kurzzeitige Geräuschspitzen während der Tageszeit um mehr als 30 dB und nachts um mehr als 20 dB auszuschließen ist. Kurzzeitige Geräuschspitzen im Sinne der TA Lärm sind durch Einzelereignisse hervorgerufene Maximalwerte des Schalldruckpegels (L_{AFmax}), die im bestimmungsgemäßen Betriebsablauf auftreten. Die Berechnungsergebnisse hierzu zeigen, dass die zulässigen Werte ebenfalls deutlich unterschritten werden.

Zusammenfassend ist somit bei bestimmungsgemäßem Betrieb der hier betrachteten Gesamtanlage von keinen schädlichen Umwelteinwirkungen durch Geräusche nach den Bewertungsmaßstäben der TA Lärm auszugehen.

Münster, den 20.10.2023

B. Eng. Christian Schmitz Verfasser Dipl.-Ing. Matthias Krummen Prüfung und Freigabe

nts Ingenieurgesellschaft mbH Messstelle nach 29b BlmSchG

Akkreditiertes Prüflaboratorium nach DIN EN ISO/IEC 17025:2018-03 für das Modul Immissionsschutz Ermittlung von Geräuschen (Gruppe V)

Dieses Gutachten umfasst 33 Seiten im Textteil und 61 Seiten im Anhang und darf nur in seiner Gesamtheit, einschließlich aller Anhänge, vervielfältigt, gezeigt oder veröffentlicht werden. Die auszugsweise Vervielfältigung des Gutachtens ist nur mit schriftlichen Genehmigung durch die nts Ingenieurgesellschaft mbH gestattet.

Die nts Ingenieurgesellschaft mbH ist für den gesamten Inhalt dieses Gutachtens verantwortlich. Für die Richtigkeit der bereitgestellten Informationen, die nts nicht prüfen kann, wird keine Verantwortung übernommen.

Die Unterzeichner erstellten dieses Gutachten unabhängig und nach bestem Wissen und Gewissen. Als Grundlage für die Feststellungen und Aussagen der Sachverständigen dienten die vorgelegten und im Gutachten zitierten Unterlagen sowie die Auskünfte der Beteiligten. Die Ergebnisse beziehen sich nur auf die untersuchten Gegenstände.

1. Vorhabenbeschreibung und Aufgabenstellung

1.1. Beschreibung des Vorhabens

Die Gemeinde Börger plant die Entwicklung von Flächen für Gewerbe und zur Energiegewinnung. Hierzu soll die bestehende Biogasanlage an der Breddenberger Straße u. a. um zusätzliche Behälter und eine Biomethanaufbereitungsanlage erweitert werden. Des Weiteren soll innerhalb des Plangebietes eine weitere Biogasanlage, eine Kartoffellagerhalle und eine Einspeiseanlage errichtet werden. Zur Schaffung der planungsrechtlichen Grundlage ist die 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel sowie die Aufstellung des Bebauungsplanes Nr. 38 "Biogasanlage, 1. Erweiterung" der Gemeinde Börger erforderlich. In südwestlicher Richtung des Plangebietes ist Wohnbebauung vorhanden. Der Geltungsbereich des Bebauungsplans ist in der Abbildung 1 dargestellt.

Abbildung 1: Übersichtslageplan

Im Rahmen des Bebauungsplanverfahrens wurde die nts Ingenieurgesellschaft mbH mit der Durchführung einer schalltechnischen Untersuchung zum Gewerbelärm - ausgehend vom gesamten Plangebiet - beauftragt.

1.2. Aufgabenstellung

Im Rahmen des Bauleitplanverfahrens sollen schalltechnische Untersuchungen zum Gewerbelärm durchgeführt werden, um zu prüfen, ob die Nutzung des Plangebiets verträglich ist mit den schutzwürdigen Nutzungen in der Nachbarschaft. Die Ermittlung und die Beurteilung der Geräuschimmissionen in der Nachbarschaft des gesamten Plangebietes erfolgt nach der Technischen Anleitung zum Schutz gegen Lärm (TA Lärm) [1].

Zur Bestimmung der Geräuschsituation in der Nachbarschaft des geplanten Gesamtbetriebes wird ein digitales Berechnungsmodell mit allen beurteilungsrelevanten Geräuschquellen erstellt.

Anschließend werden Schallausbreitungsberechnungen nach DIN ISO 9613-2 [3] durchgeführt und die durch den geplanten Gesamtbetrieb hervorgerufenen Schallimmissionen im Bereich der maßgeblichen Immissionsorte rechnerisch ermittelt.

Sollten die schalltechnischen Anforderungen nicht eingehalten werden, sind geeignete Maßnahmen zur Geräuschminderung aufzuzeigen.

Die Grundlagen und Ergebnisse der schalltechnischen Untersuchung sind in Form eines gutachtlichen Berichtes darzustellen.

Seite 9 von 33

2. Grundlagen für die schalltechnische Beurteilung

Die Grundlage zur Ermittlung und zur Beurteilung von Geräuschimmissionen gewerblicher und industrieller Anlagen bildet die Technische Anleitung zum Schutz gegen Lärm (TA Lärm [1]). Sie dient dem Schutz der Allgemeinheit und der Nachbarschaft vor schädlichen Umwelteinwirkungen durch Geräusche sowie der Vorsorge gegen schädliche Umwelteinwirkungen durch Geräusche. Schädliche Umwelteinwirkungen im Sinne der TA Lärm sind Geräuschimmissionen, die nach Art, Ausmaß oder Dauer geeignet sind, Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für die Allgemeinheit oder die Nachbarschaft herbeizuführen.

Immissionsrichtwerte der TA Lärm

Im Regelfall ist der Schutz vor schädlichen Umwelteinwirkungen durch Geräusche im Sinne des § 5 Abs. 1 Nr. 1 BlmSchG [2] im Einwirkungsbereich gewerblicher oder industrieller Anlagen sichergestellt, wenn die in Nr. 6 der TA Lärm angegebenen Immissionsrichtwerte nicht überschritten werden (s. Tabelle 1). Die Immissionsrichtwerte sind abhängig von der Gebietsnutzung in der Nachbarschaft der gewerblichen und industriellen Anlagen.

Tabelle 1: Gebietsnutzung und Immissionsrichtwerte der TA Lärm

Gebietsnutzung	Immissionsrichtwerte nach Nr. 6.1 der TA Lärm tags/nachts in dB(A)
Kurgebiet, Krankenhaus und Pflegeanstalt	45 / 35
Reines Wohngebiet	50 / 35
Allgemeines Wohngebiet	55 / 40
Kern-, Dorf- und Mischgebiet	60 / 45
Urbanes Gebiet	63 / 45
Gewerbegebiet	65 / 50
Industriegebiet	70 / 70

Beurteilungszeiträume

Die Immissionsrichtwerte nach TA Lärm (s. Tabelle 1) beziehen sich tags auf die Zeit von 06:00 Uhr bis 22:00 Uhr und nachts auf die Zeit von 22:00 Uhr bis 06:00 Uhr. Sie gelten während des Tages für eine Beurteilungszeit von 16 Stunden. Maßgebend für die Beurteilung der Nacht ist die volle Nachtstunde (z. B. 01:00 Uhr bis 02:00 Uhr) mit dem höchsten Beurteilungspegel, zu dem die zu beurteilende Anlage relevant beiträgt.

Zuschlag für Ruhezeiten am Tag

Für folgende Zeiten wird entsprechend der TA Lärm in Kurgebieten, bei Krankenhäusern und Pflegeanstalten, in Reinen und Allgemeinen Wohngebieten sowie in Kleinsiedlungsgebieten bei der Ermittlung des Beurteilungspegels die erhöhte Störwirkung von Geräuschen durch einen Zuschlag von 6 dB berücksichtigt:

1. an Werktagen: 06:00 Uhr bis 07:00 Uhr

20:00 Uhr bis 22:00 Uhr

2. an Sonn- und Feiertagen: 06:00 Uhr bis 09:00 Uhr

13:00 Uhr bis 15:00 Uhr 20:00 Uhr bis 22:00 Uhr

Von der Berücksichtigung des Zuschlags kann abgesehen werden, soweit dies wegen der besonderen örtlichen Verhältnisse unter Berücksichtigung des Schutzes vor schädlichen Umwelteinwirkungen erforderlich ist. Für Misch-, Kern-, Gewerbe- und Industriegebiete sowie für Urbane Gebiete sind keine Zuschläge für die erhöhte Störwirkung von Geräuschen innerhalb der Tageszeit mit besonderer Empfindlichkeit zu berücksichtigen.

Vor-, Zusatz- und Gesamtbelastung

Die Immissionsrichtwerte sind von der Gesamtgeräuschbelastung aller relevant an den maßgeblichen Immissionsorten einwirkenden Anlagen, für die die TA Lärm gilt, einzuhalten. Zur Beurteilung der Gesamtbelastung ist daher neben den von der zu beurteilenden Anlage verursachten Immissionsbeiträgen (Zusatzbelastung) auch eine evtl. vorliegende Vorbelastung durch weitere, der TA Lärm unterliegenden Anlagen zu betrachten.

Eine Vorbelastung in dem zu beurteilenden Gebiet muss in der Regel dann nicht ermittelt werden, wenn die von der zu beurteilenden Anlage ausgehende Zusatzbelastung die Immissionsrichtwerte am maßgeblichen Immissionsort um mindestens 6 dB unterschreitet.

Werden die Richtwerte anteilig um mindestens 10 dB unterschritten, so liegen die Immissionsorte nach Nr. 2.2 der TA Lärm nicht mehr im Einwirkungsbereich der Anlage. Die Immissionsbeiträge der betrachteten Anlage sind damit nicht beurteilungsrelevant.

Maßgeblicher Immissionsort

Der maßgebliche Immissionsort, für den die Geräuschbeurteilung nach TA Lärm vorgenommen wird, ist der Ort im Einwirkungsbereich der betrachteten Anlage, an dem eine Überschreitung der Immissionsrichtwerte in der Gesamtgeräuschbelastung am ehesten zu erwarten ist. Gemäß TA Lärm (A1.3) liegen die maßgeblichen Immissionsorte bei bebauten Flächen 0,5 m außerhalb vor der Mitte des geöffneten Fensters des vom Geräusch am stärksten betroffenen schutzbedürftigen Raumes nach DIN 4109-1 [3]. Bei unbebauten Flächen oder bebauten Flächen, die keine Gebäude mit schutzbedürftigen Räumen enthalten, liegt der maßgebliche Immissionsort an dem am stärksten betroffenen Rand der Fläche, wo nach dem Bau- und Planungsrecht Gebäude mit schutzbedürftigen Räumen errichtet werden dürfen.

Der Schutzanspruch orientiert sich im Allgemeinen an den in der Bauleitplanung festgesetzten Gebietsnutzungen gemäß der Baunutzungsverordnung (BauNVO) [4]. Vorhandene Bebauung ohne in der Bauleitplanung festgesetzte Gebietsausweisung gemäß der BauNVO wird entsprechend der tatsächlichen Nutzung ggf. unter Hinzuziehung des Flächennutzungsplans berücksichtigt.

Bericht-Nr. S07230022-1 • 20.10.2023

Die zu berücksichtigenden Immissionsorte wurden im Rahmen eines Besprechungstermins mit der Gemeinde Börger [5] abgestimmt. Die Lage der Gebäude mit im Sinne der TA Lärm schutzwürdigen Räumen im Umfeld der hier betrachteten Gewerbenutzung wurde im Rahmen eines Ortstermins am 24.08.2023 [6] festgestellt. Die Immissionsorte sind in der nachfolgenden Abbildung 2 dargestellt.

Abbildung 2: Übersichtslageplan mit Darstellung der betrachteten Immissionsorte

Für die berücksichtigten Immissionsorte gelten gemäß uns vorliegender Informationen [5] nachfolgend aufgeführte Immissionsrichtwerte gemäß Nr. 6.1 der TA Lärm.

Tabelle 2: Immissionsorte (IO), Gebietsnutzungen und Immissionsrichtwerte (IRW) der TA Lärm

IO-Nr.	Adresse/Bezeichnung	Gebiets- nutzung	IRW tags/nachts in dB(A)
01	Edith-Stein-Ring 37	WA	55/40
02	Pater-Augustin-Straße	WA	55/40
03	mögliche Baugrenze (potenzielles Wohngebiet)	WA	55/40

3. Ermittlung der Geräuschemissionen

Der Bebauungsplan Nr. 38 "Biogasanlage, 1. Erweiterung" der Gemeinde Börger wird als Sondergebiet ausgewiesen.

Im Sinne des vorbeugenden Immissionsschutzes werden im Rahmen des Bauleitplanverfahrens die geplanten gewerblichen Nutzungen anhand der zum aktuellen Planungsstand bereits vorliegenden Informationen schalltechnisch untersucht, um mögliche Konflikte frühzeitig aufzuzeigen.

Die Berechnung der Beurteilungspegel für die Geräuschimmissionen durch die hier betrachteten Betriebe und Anlagen erfolgt auf der Grundlage der nachfolgenden Betriebsbeschreibungen und Emissionsansätze.

Die dazu im Rahmen eines Ortstermins festgestellten örtlichen Gegebenheiten [6], die geplanten Gebäude und die relevanten Geräuschquellen mit den hierfür ermittelten Emissionsdaten werden mit dem Programmsystem SoundPLAN Version 9.0 (Update 12.10.2023) [7] in ein dreidimensionales Berechnungsmodell eingestellt. Anschließend werden Schallausbreitungsrechnungen durchgeführt und die durch die geplanten Betriebe insgesamt hervorgerufenen Geräuschimmissionen in der umliegenden Nachbarschaft rechnerisch ermittelt.

3.1. Betriebsbeschreibung

Für die Beurteilung der durch das Plangebiet hervorgerufenen anteiligen gewerblichen Geräuschimmissionen an der umgebenden benachbarten Wohnbebauung sind folgende Anlagen relevant und werden in der vorliegenden Immissionsprognose berücksichtigt:

- vorhandene Biogasanlage inkl. geplanter Erweiterung (BGA Bestand)
- geplante Biogasanlage (BGA Planung)
- Biomethanaufbereitungsanlage
- Einspeiseanlage
- Kartoffellagerhalle

Die Geräuschsituation wird hierbei insbesondere durch die technischen Geräuschquellen aber auch durch schallabstrahlende Gebäudefassaden und Betriebsverkehre im Außenbereich verursacht. Entsprechend der zur Verfügung gestellten Betriebsbeschreibungen [8], [9], [10] wurden folgende Betriebsansätze im Rahmen der vorliegenden schalltechnischen Untersuchung berücksichtigt.

Tabelle 3: Auflistung der relevanten Geräuschquellen und Betriebsverkehre für einen Betriebstag

Geräuschquelle	Anzahl/ Art	Betriebszeit, Bemerkung
Schallabstrahlende Gebäudefassaden		
siehe Kapitel 3.3.1		
Technische Geräuschquellen		
siehe Kapitel 3.3.2		

Bericht-Nr. S07230022-1 • 20.10.2023

Geräuschquelle	Anzahl/ Art	Betriebszeit, Bemerkung
Betriebsverkehre	,	
BGA Bestand - Anlieferung Mist	5 Lkw/IFz	6:00 Uhr - 22:00 Uhr
BGA Bestand - Anlieferung Gülle	4 Lkw/IFz	6:00 Uhr - 22:00 Uhr, inkl. 5 Minuten Be- trieb der Lkw-Pumpe/Kfz
BGA Bestand - Beschickung Anlage	1 Radlader	120 Minuten 6:00 Uhr - 22:00 Uhr
BGA Planung - Anlieferung Mist	5 Lkw/IFz	6:00 Uhr - 22:00 Uhr
BGA Planung - Anlieferung Gülle	1 Lkw/IFz	6:00 Uhr - 22:00 Uhr, inkl. 5 Minuten Be- trieb der Lkw-Pumpe/Kfz
BGA Planung - Beschickung Anlage	1 Radlader	120 Minuten 6:00 Uhr - 22:00 Uhr
Kartoffellagerhalle - Anlieferung/Abholung	20 Lkw/IFz	6:00 Uhr - 22:00 Uhr
Kartoffellagerhalle - Teleskoplader	1 Kfz	5 Stunden 6:00 Uhr - 22:00 Uhr
Gärrest Abholung - Lkw/IFz Abholung BGA Bestand + Planung	24 Kfz	6:00 Uhr - 22:00 Uhr, inkl. Kfz-eigenen Kompressor 5 Min/Kfz (nicht parallel mit Maisernte)
Maisernte - IFz Anlieferung Silage	100 Kfz	6:00 Uhr - 20:00 Uhr (nur zur Maisernte, nicht parallel mit Gärrest-Abholung)
Maisernte - Radlader Verdichten Silage	1 Kfz	13 Stunden in der Zeit 6:00 Uhr - 20:00 Uhr (nur zur Maisernte, nicht parallel mit Gärrest-Abholung)

Die hier dargestellte Betriebssituation stellt nach Betreiberangaben für den Regelbetrieb die obere Erwartungsgrenze dar, u. a. die Anlieferung von Silage und die Abholung der Gärreste erfolgt nur an wenigen Tagen des Jahres. Die Anlieferungen von weiteren Input-Stoffen der Biogasanlagen erfolgt nicht parallel mit den hier dargestellten Betriebssituationen und sind aufgrund der geringeren Frequentierungen schalltechnisch weniger relevant und werden nicht weiter berücksichtigt. Eine parallele Maisernte im Bereich beider Biogasanlagen ist ebenfalls nicht möglich (u. a. Ressourcentechnisch) deswegen wird die Maisernte im Sinne einer schalltechnischen Maximalbetrachtung im Bereich der bestehenden Biogasanlage (näher zu den Immissionsorten) berücksichtigt.

Die Lage der relevanten Geräuschquellen kann dem Anhang 1 entnommen werden. Alle für die einzelnen Geräuschquellen ermittelten Schallleistungspegel sind im Detail dem Anhang 2 (Situation Regelbetrieb mit Abholung Gärrest) und Anhang 5 (Situation Regelbetrieb mit Maisernte) zu entnehmen.

147. Änderung Flächennutzungsplan und Aufstellung Bebauungsplan Nr. 38 "Biogasanlage, 1. Erweiterung" Seite 14 von 33

3.2. Messprotokoll

Im Rahmen eines Orts- und Messtermins [6] wurden die Geräuschemissionen für relevante Betriebsvorgänge im Bereich der hier betrachteten bestehenden Anlage messtechnisch ermittelt. Die Rahmenbedingungen für die durchgeführten Messungen sind im folgenden Messprotokoll festgehalten.

Angaben zu den Messungen

Ort der Messung Breddenberger Straße in 26904 Börger

Emissionsmessungen im Bereich der lärmrelevanten Betriebsberei-

che und technischen Anlagen

Datum der Messung 24.08.2023

Messungen vorgenommen von B. Eng. Christian Schmitz

Meteorologische Daten

Temperatur 23 °C
Rel. Luftfeuchtigkeit 70 %
Luftdruck 1.016 hPa

Windrichtung: Ost
Windgeschwindigkeit 2 m/s
Bewölkungsgrad 2/8

Aufgrund der meteorologischen Gegebenheiten und den Messungen im Nahfeld der Anlagen können die meteorologischen Einflüsse auf die Messergebnisse vernachlässigt werden.

Messgeräte

Bezeichnung	Hersteller	Тур	Serien-Nr.	Bemerkung
Präzisions-Schallanalysator	Norsonic AS	140	1402910	
Messmikrofon	Norsonic AS	1225	72963	Geeicht bis
Vorverstärker	Norsonic AS	1209	12147	31.12.2025
Kalibrator	Norsonic AS	1251	31355	

Die Messgeräte entsprechen der Klasse 1 nach DIN EN 61672-1 [11] für Schallpegelmesser bzw. DIN EN IEC 60942 [12] für Kalibratoren. Eine Kalibrierung der Messkette wurde vor und nach der Messung durchgeführt. Abweichungen bei den Kalibrierergebnissen wurden nicht festgestellt.

Anlagen- und Fremdgeräusche

Anlagengeräusche Emissionsmessungen in und an den schalltechnisch relevanten Be-

triebsbereichen und -anlagen. Sämtliche Anlagen waren nach eigener Inaugenscheinnahme und den Angaben des Betreibers während den Messungen in repräsentativen Betrieb.

Fremdgeräusche Relevante Fremdgeräusche durch z. B. vorbeifahrende Kfz wurden

- soweit möglich - messtechnisch ausgeblendet. Sie wurden bei der

Bildung der Schallleistungspegel ausgenommen.

Bericht-Nr. S07230022-1 • 20.10.2023

Emissionsansätze 3.3.

3.3.1. Schallübertragung von Räumen ins Freie

Die Geräuschemissionen von schallübertragenden Außenbauteilen eines Gebäudes - wie Wände, Dach, Fenster, Türen, Öffnungsflächen oder zusammengefasste Bauteilen - ins Freie werden mit dem Berechnungsverfahren der DIN EN 12354-4 [13] ermittelt. Die Geräuschemission wird als Schallleistungspegel L_W in dB(A) angegeben und hängt neben der Größe der einzelnen Außenbauteile vom Rauminnenpegel und von den akustischen Eigenschaften innerhalb des Raumes (Diffusität) und denen des Bauteils selber (Schalldämmmaß) ab.

$$L_W = L_{p,in} + C_d - R' + 10 \cdot \log \left(\frac{S}{S_0}\right)$$

mit

Schallleistungspegel der Ersatzschallquelle in dB L_{W}

Schalldruckpegel im Abstand von 1 m bis 2 m vor der Innenseite des Außenbauteils oder der $L_{p,in}$ Bauteilgruppe in dB

- $C_d = -6 \text{ dB}$ $C_d = -3 \text{ dB}$ $C_d = -5 \text{ dB}$ $C_d = -3 \text{ dB}$ $C_d = 0 \text{ dB}$ C^{q} Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe in dB relativ kleine, gleichförmige Räume (diffuses Feld) vor reflektierender Oberfläche C_d = -6 dB relativ kleine, gleichförmige Räume (diffuses Feld) vor absorbierender Oberfläche C_d = -3 dB große, flache oder lange Hallen, viele Schallquellen (durchschnittliches Industriegebäude) vor reflektierender Oberfläche Industriegebäude, wenige dominierende und gerichtet abstrahlende Schallquellen vor reflektierender Oberfläche Industriegebäude, wenige dominierende und gerichtet abstrahlende Schallquellen vor absorbierender Oberfläche
- R' Bau-Schalldämm-Maß des jeweiligen Bauteils oder der Bauteilgruppe in dB
- S Fläche des Bauteils oder der Bauteilgruppe in m²
- Bezugsfläche = 1 m² S₀

Die Rauminnenpegel L_{p,in} in den schalltechnisch relevanten Betriebsräumen im Bestand wurden bei repräsentativen Betriebsbedingungen messtechnisch ermittelt. Hierbei wurde der energieäquivalente Mittelungspegel L_{Aeq} sowie der in Nr. 2.9 der TA Lärm [1] definierte Taktmaximalpegel L_{AFTeq} erfasst. Der Taktmaximalpegel wird nach TA Lärm zur Beurteilung impulshaltiger Geräusche verwendet. Zu diesem Zweck wird die Differenz L_{AFTeq} - L_{Aeq} als Zuschlag für Impulshaltigkeit definiert.

Alle Rauminnenpegel für die geplanten schalltechnisch relevanten Betriebsräume wurde auf der Grundlage der zur Verfügung gestellten technischen Datenblätter zu den innerhalb der Betriebsräume geplanten technischen Anlagen sowie der geplanten Bauausführungen [8], [9], [10] rechnerisch ermittelt.

Die ermittelten Rauminnenpegel sind in der Tabelle 4 zusammengefasst. Im Sinne der Prognosesicherheit werden im vorliegenden Fall die emissionsseitig ermittelten Zuschläge für die Impulshaltigkeit in vollem Umfang berücksichtigt.

Tabelle 4: Rauminnenpegel in den schalltechnisch relevanten Betriebsräumen

Bereich	Raum	Ermittelter und berücksichtigter Rauminnenpegel L _{p,in} in dB(A)	Betriebszeit
BGA Bestand	Betriebshalle	70	24 Stunden
DOA Destand	внкш	95	24 Stunden
	BGHVA 1	105*	24 Stunden
	BGHVA 1 E-Raum	70*	24 Stunden
Einspeiseanlage	BGHVA 2	105*	24 Stunden
	BGHVA 2 E-Raum	70*	24 Stunden
B :: L : L ::	BGSW	92	24 Stunden

^{*} Berücksichtigung entsprechend den zur Verfügung gestellten technischen Unterlagen [10]

Die bauliche Ausführung der Außenbauteile der relevanten Räume wurde im Rahmen des Ortstermins [6] festgestellt sowie den Planunterlagen [8], [9], [10] entnommen. Die den Baukonstruktionen entsprechenden bewerteten Bau-Schalldämm-Maße R werden auf der Grundlage uns vorliegender Prüfzeugnisse und einschlägiger Fachliteratur berücksichtigt. Da die Schalldämmung frequenzabhängig ist, werden die Berechnungen mit den jeweiligen Oktavspektren der Rauminnenpegel L_{p,in} und der Bau-Schalldämm-Maße durchgeführt. In der Tabelle 4 wie auch in den Berechnungsdatenblättern in Anlage 2 sind der Übersichtlichkeit halber nur die entsprechenden Einzahlwerte angegeben.

Tabelle 5: Bau-Schalldämm-Maße der Umfassungsbauteile

Außenbauteil	Ausführung des Außenbauteils	R' _W bzw. R _W in dB
	Beton + Dämmung + Vorsatzschale	56
Dach	Trapezblech + Dämmung 140 mm + Spanplatte 10 mm	30
	Stahlsandwichpaneele	25
	Beton + Dämmung + Vorsatzschale	56
Wand	Trapezblech + Dämmung 140 mm + Spanplatte 10 mm	30
	Stahlsandwichpaneele	25
Tore, Türen	geschlossen (Stahltür)	20
Tole, Tulell	geöffnet	0

Bericht-Nr. S07230022-1 • 20.10.2023

Auf Grund der massiven Bauausführung der weiteren Außenbauteile (u. a. Mauerwerk) und des eher geringen Rauminnenpegels in diesen Bereichen wird die Schallübertragung ausschließlich über die oben aufgeführten Außenbauteile berücksichtigt. Die übrigen Fassaden werden als nicht relevant eingestuft und bleiben unberücksichtigt.

Der Wert des Diffusitätsterms C_d ist abhängig von der Diffusität des Schallfeldes im Gebäudeinneren und von der raumseitigen Absorption des betrachteten Bauteils oder der Bauteilgruppe in der Gebäudehülle. Die für die einzelnen Räume bzw. Bauteile berücksichtigten Diffusitätsterme sind den Tabellen im Anhang 2 und Anhang 5 zu entnehmen.

Relevante kurzzeitige Geräuschspitzen sind beim bestimmungsgemäßen Betrieb aus den Räumen nicht zu erwarten.

3.3.2. Technische Geräuschquellen

Die vorherrschende Geräuschsituation im Umfeld des Plangebietes wird u. a. durch die bestehenden stationären technischen Geräuschquellen im Außenbereich verursacht. Diese Geräuschquellen wurden im Rahmen des Messtermins [6] auf der Grundlage akustischer Messungen der DIN EN ISO 3740 [14] und deren, die jeweilige Messaufgabe konkretisierenden Folgenormen erfasst. Für die geplanten Erweiterungen wurden die zugehörigen Geräuschemissionen der technischen Geräuschquellen auf der Grundlage der Planungsunterlagen [8], [9], [10] ermittelt. In der nachfolgenden Tabelle 6 sind diese zusammengefasst dargestellt.

Tabelle 6: Geräuschemissionen stationärer technischer Geräuschquellen

Bereich	Schallquelle	Lage	Schallleistungs- pegel L _{WA} in dB(A)	Betriebszeit
BGA Bestand	BHKW Abluft 1 + 2	in Fassade Nord	je 70	24 Stunden
Destand	BHKW Zuluft 1 + 2	in Fassade Süd	je 65	24 Stunden
	Dachlüfter 1 + 2 Annahmebe- hälter	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Fermenter I	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Fermenter III	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 +2 Fermenter IV	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Lagerbehälter	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Lagerbehälter	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 +2 Lagerbehälter	oben am Behälter	je 85*	24 Stunden

Bericht-Nr. S07230022-1 • 20.10.2023

Bereich	Schallquelle	Lage	Schallleistungs- pegel L _{WA} in dB(A)	Betriebszeit
	Dachlüfter 1 + 2 Lagerbehälter IV	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Nachgärer I	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Nachgärer II	oben am Behälter	je 85*	24 Stunden
	Feststoffeintrag mit Flüssigfut- tereinheit I + II	-	je 95*	10 Min/h - 24 Stunden
	Gärresttrocknungsanlage Regenis GT	-	93*	24 Stunden
	Gasverdichter	westlich BHKW	86	24 Stunden
	Gemischkühler BHKW 1 + 2	westlich BHKW	je 87	24 Stunden
	Rührwerk Fermenter I, III + IV	-	je 79*	20 Min/h - 24 Stunden
	Stickstoffeinheit Wärmespei- cher	am Behälter Wär- mespeicher	80*	24 Stunden
BGA Planung	BHKW Containeranlage (Fabrikat 2G)	-	98*	24 Stunden
	Dachlüfter 1 + 2 Annahmebe- hälter	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Fermenter I	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Fermenter II	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Lagerbehälter	oben am Behälter	je 85*	24 Stunden
	Dachlüfter 1 + 2 Nachgärer	oben am Behälter	je 85*	24 Stunden
	Feststoffeintrag mit Flüssigfut- tereinheit	-	95*	10 Min/h - 24 Stunden
	Gärresttrocknungsanlage Regenis GT	-	93*	24 Stunden
	Rührwerk Fermenter I + II	oben am Behälter	je 79*	20 Min/h - 24 Stunden

Bereich	Schallquelle	Lage	Schallleistungs- pegel L _{WA} in dB(A)	Betriebszeit
	Stickstoffeinheit Wärmespei- cher	am Behälter Wär- mespeicher	80*	24 Stunden
Biome- than	Biomethanaufbereitung	-	91*	24 Stunden
Einspei- sean-	BGHVA 1-Abluft passiv	in Fassade Süd	78*	24 Stunden
lage	BGHVA 1-Abluft Ventilator	in Fassade Süd	84,3*	24 Stunden
	BGHVA 1-Zuluftgitter	in Fassade Ost	88,6*	24 Stunden
	BGHVA 1 Luftkühler Lamellen	südlich BGHVA 1	83,9*	24 Stunden
	BGHVA 1 Luftkühler Ventilator	südlich BGHVA 1	84,3*	24 Stunden
	BGHVA 2-Abluft passiv	in Fassade Süd	78*	24 Stunden
	BGHVA 2-Abluft Ventilator	in Fassade Süd	84,3*	24 Stunden
	BGHVA 2-Zuluftgitter	in Fassade West	88,6*	24 Stunden
	BGHVA 2 Luftkühler Lamellen	südlich BGHVA 2	83,9*	24 Stunden
	BGHVA 2 Luftkühler Ventilator	südlich BGHVA 2	84,3*	24 Stunden
	BGMKOA I-Abluftgitter	in Fassade West	78*	24 Stunden
	BGMKOA I-Zuluftgitter 1 + 2	in Fassade West	je 78*	24 Stunden
	BGMKOA II-Abluftgitter	in Fassade Ost	78*	24 Stunden
	BGMKOA II-Zuluftgitter 1 + 2	in Fassade Ost	je 78*	24 Stunden
	BGSW-Abluftventilator	in Fassade Süd	82,2*	24 Stunden
	BGSW-Zuluftgitter	in Fassade Süd	77,7*	24 Stunden
Kartof- fellager	Kartoffellager 1 - Lüftungskulisse 1 + 2	in Fassade Süd Kartoffellagerhalle	je 88*	24 Stunden
	Kartoffellager 2 - Lüftungskulisse 1 + 2	in Fassade Süd Kartoffellagerhalle	je 88*	24 Stunden
	Kartoffellager 3 - Lüftungskulisse 1 + 2	in Fassade Süd Kartoffellagerhalle	je 88*	24 Stunden

147. Änderung Flächennutzungsplan und Aufstellun	g Bebauungsplan Nr. 38 "Biogasanlage	1. Erweiterung"	Seite 20 von 33
--	--------------------------------------	-----------------	-----------------

Bereich	Schallquelle	Lage	Schallleistungs- pegel L _{WA} in dB(A)	Betriebszeit
	Kartoffellager 4 - Lüftungskulisse 1 + 2	in Fassade Süd Kartoffellagerhalle	je 88*	24 Stunden

^{*} Berücksichtigung entsprechend den zur Verfügung gestellten technischen Datenblätter [8], [9], [10]. Der angesetzte Schallleistungspegel ist als schalltechnische Vorgabe ohne Toleranz nach oben anzusehen.

Die Geräuschemissionen der geplanten technischen Geräuschquellen müssen einzeltonfrei im Sinne der TA Lärm [1] sein. Die Inbetriebnahme von Anlagenteilen mit höheren Schallemissionen ist nur zulässig, wenn die schalltechnischen Auswirkungen unter Einbeziehung aller weiteren relevanten Geräuschquellen gutachterlich geprüft und freigegeben worden sind.

Kurzzeitige Geräuschspitzen sind beim bestimmungsgemäßen Betrieb der in Tabelle 6 aufgeführten stationären Anlagen nicht zu erwarten.

3.3.3. Betriebsverkehre

Fahr- und Parkgeräusche von Lkw und IFz

Als Grundlage für die Berechnung der Geräuschemissionen der Fahr- und Abstellgeräusche von Lkw und landwirtschaftlichen Fahrzeugen (IFz) werden technische Berichte des Hessischen Landesamtes für Umwelt [15] bzw. dem heutigen Hessischen Landesamtes für Umwelt und Geologie [16] zu den Lkw- und Ladegeräuschen auf Betriebsgeländen herangezogen.

Die Geräuschemission der Fahrgeräusche von Lkw und IFz wird durch den auf die jeweilige Beurteilungszeit bezogenen Schallleistungspegel L_{WAr} beschrieben. Dieser Schallleistungspegel berechnet sich mit folgender Gleichung:

$$L_{WAr} = L_{WA,1h} + 10 \cdot \log(n) + 10 \cdot \log\left(\frac{1}{I_0}\right) - 10 \cdot \log\left(\frac{T}{T_0}\right)$$

mit

L_W'_{A,1h} zeitlich gemittelter längenbezogener Schallleistungspegel für 1 Kfz pro Stunde und 1 m Fahrweg

aniwog

 $L_{W'A,1h} = 63 dB(A)$

n Anzahl der Kfz in der Beurteilungszeit T_r

I Länge eines Streckenabschnittes in m ($I_0 = 1 \text{ m}$)

 T_0 Beurteilungszeit in h ($T_0 = 1$ h)

Für Rangiervorgänge von Lkw und IFz wird nach dem genannten technischen Bericht [16] in Abhängigkeit von dem Umfang der erforderlichen Rangiertätigkeiten ein längenbezogener Schallleistungspegel für einen Vorgang pro Stunde je Meter Rangierweg angesetzt von bis zu

$$L_{W'A 1h} = 68,0 dB(A).$$

Die Geräuschemissionen für die Park- bzw. Stellvorgänge von Lkw und IFz beinhalten den Abstellvorgang des Fahrzeugs sowie den späteren Startvorgang vor der Abfahrt. Diese Vorgänge werden maßgeblich bestimmt durch Einzelereignisse wie das Entlüftungen der Betriebsbremsen (1 Vorgang), dem

Schlagen der Kfz-Türen (bis zu 3 Vorgänge) sowie dem Motoranlassen (1 Vorgang). Darüber hinaus ist auch der Motorleerlauf (Aufwärmvorgang und Drucklufterzeugung für die Betriebsbremsen) zu berücksichtigen. Hierfür kann mit einer Einwirkzeit von 5 Minuten ausgegangen werden.

Die Schallleistungspegel für die genannten Einzelereignisse (L_{WA}) sowie für den Motorleerlauf werden ebenfalls im technischen Bericht des Hessischen Landesamtes für Umwelt und Geologie [16] sowie in der Parkplatzlärmstudie des Bayerischen Landsamtes für Umwelt [17] angegeben. Hieraus lässt sich ein Schallleistungspegel für einen Abstellvorgang mit den oben beschriebenen Betriebsvorgängen bezogen auf eine Stunde ableiten von

$$L_{WA.1h} = 84.8 \text{ dB(A)}.$$

Geräuschspitzen von einzelnen kurzzeitigen Ereignissen werden auf der Grundlage der Parkplatzlärmstudie des Bayerischen Landesamtes für Umwelt [17] berücksichtigt. In Tabelle 19 dieser Studie werden folgende mittlere Maximalpegel in 7,5 m Abstand aus Messungen angegeben:

Beschleunigte Abfahrt von Lkw (12 Messungen) $L_{AFmax} = 78,6 \text{ dB}(A)$ Druckluftgeräusch (8 Messungen) $L_{AFmax} = 78,2 dB(A)$

Die diesen Messwerten entsprechenden Maximal-Schallleistungspegel liegen für die beschleunigte Abfahrt und für die Druckluftgeräusche bei $L_{AFmax} = 104 \text{ dB}(A)$.

Ausfuhr Gärreste

Zusätzlich ist nach Angaben der Betreiber die Abholung von Gärreste im Bereich der Biogasanlagen zu berücksichtigen. Für die Gülle Abholung wird der Betrieb des Kfz-eigenen Kompressors bzw. Motors mit einem über die Verladezeit gemittelten Schallleistungspegel von

berücksichtigt.

Kurzzeitige Geräuschspitzen sind neben den Fahrzeuggeräuschen (s. vorangegangene Emissionsdaten) beim bestimmungsgemäßen Betrieb der fahrzeuggebundenen Pumpen nicht zu erwarten.

Abkippen Maissilage

Für das Abkippen von Maissilage aus den Lieferfahrzeugen im Bereich des Fahrsilos wird auf der Grundlage des Leitfades zur Prognose von Geräuschen bei der Be- und Entladung von Lkw, laufende Nummer 2.6 (für das Abkippen von Erde, Lehm) [18] ein auf eine Stunde bezogener Schallleistungspegel von

$$L_{WAr, 1h} = 87,4 dB(A)$$

inkl. eines anlagentypischen mittleren Zuschlages für die Impulshaltigkeit berücksichtigt.

Kurzzeitige Geräuschspitzen durch Abrutschen des Materials und Klappenschlagen etc. werden nach der o. g. Studie mit einem Maximal-Schallleistungspegel von L_{WAmax} = 107,3 dB(A) berücksichtigt.

Radlader, Teleskoplader o. ä.

Nach Betreiberangaben ist der Betrieb eines Teleskopladers, Radlader o. ä. zur Beschickung der Biogasanlagen, zum Verdichten der Maissilage und zu Verladezwecken im Bereich der Kartoffellagerhalle zu berücksichtigen.

Als Emissionsansatz wurde entsprechend dem technischen Bericht zur Untersuchung der Geräuschemissionen von Anlagen zur Abfallbehandlung und -verwertung sowie Kläranlagen, Heft 1, des Hessischen Landesamtes für Umwelt und Geologie [19] ein Radlader bei Aufnahme von feinkörnigem Material (Sand), Transport zu einem Lagerplatz sowie Abkippen mit einem Schallleistungspegel von

$$L_{WA} = 107 dB(A)$$

inkl. eines anlagentypischen mittleren Zuschlages für die Impulshaltigkeit (u. a. Aufschlagen der Schaufel) berücksichtigt.

Kurzzeitige Geräuschspitzen beim Betrieb von Radladern, Teleskopstaplern etc. werden nach der o. g. Studie mit einem Maximal-Schallleistungspegel von $L_{WAmax} = 111 \text{ dB}(A)$ berücksichtigt.

4. Ermittlung der Geräuschimmissionen

Für die Schallausbreitungsberechnung verweist die Technische Anleitung zum Schutz gegen Lärm (TA Lärm [1]) im Anhang A2 auf die Regelungen der DIN ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien" [20]. Grundlegend für die Berechnung der an einem Immissionsort zu erwartenden Geräuschimmissionen ist die Gleichung (3) der Norm. Die am Immissionsort auftretenden Geräuschimmissionen werden hierbei durch den äquivalenten Oktavband-Dauerschalldruckpegel bei Mitwind L_{ft} (DW) in dB gekennzeichnet. Dieser wird wie folgt berechnet:

$$L_{fT}(DW) = L_W + D_C - A$$

Dabei ist

L_T(DW) der äquivalente Oktavband-Dauerschalldruckpegel bei Mitwind in dB

L_W der Schallleistungspegel in dB

D_C Richtwirkungskorrektur in dB

A die Dämpfung, die während der Schallausbreitung von der Punktquelle zum Empfänger vorliegt in dB. Der Dämpfungsterm A ist gegeben durch:

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$

mit

 $A_{\mbox{\scriptsize div}}$ die Dämpfung auf Grund geometrischer Ausbreitung in dB

A_{atm} die Dämpfung auf Grund von Luftabsorption in dB

A_{gr} die Dämpfung auf Grund des Bodeneffektes in dB zur Berechnung des Dämpfungsterms A_{gr} wird im vorliegenden Fall das Verfahren nach Ziffer 7.3.2 (alternatives Verfahren) angewandt

A_{bar} die Dämpfung auf Grund von Abschirmung in dB

A_{misc} die Dämpfung auf Grund verschiedener anderer Effekte in dB

Der äquivalente A-bewertete Dauerschalldruckpegel $L_{AT}(DW)$ in dB(A) bei Mitwind ist der energetische Mittelungspegel der einzelnen Immissionsbeiträge aller Punktschallquellen und für jedes Oktavband. Hieraus ergibt sich unter weiterer Berücksichtigung der meteorologischen Verhältnisse der Abewertete Langzeit-Mittelungspegel $L_{AT}(LT)$ im langfristigen Mittel. Dieser wird wie folgt berechnet:

$$L_{AT}(LT) = L_{AT}(DW) - C_{met}$$

Hierbei ist

L_{AT}(DW) der äquivalente A-bewertete Dauerschalldruckpegel bei Mitwind in dB(A)

C_{met} die meteorologische Korrektur in dB

Die meteorologische Korrektur C_{met} lässt sich nach DIN ISO 9613-2 aus dem lokalen Meteorologie-Faktor C_0 , der diese Differenz für große Entfernungen beschreibt, und einem entfernungs- und höhenabhängigen Term k bestimmen. Im vorliegenden Fall werden die Werte für C_0 zur Berechnung

147. Änderung Flächennutzungsplan und Aufstellung Bebauungsplan Nr. 38 "Biogasanlage, 1. Erweiterung" Seite 24 von 33

von C_{met} entsprechend einer Empfehlung von Dr. J. Kötter (ehemals NLÖ Hannover) mit C_0 = 1,9 dB (nachts) und $C_0 = 3.5$ dB (tags) angesetzt.

Bei der Ermittlung der Beurteilungspegel für kurzzeitige Geräuschspitzen von Einzelereignissen wird hingegen keine meteorologische Korrektur vorgenommen.

Die Schallausbreitungsberechnungen werden mit dem Anwendungsprogramm SoundPLAN, Version 9.0 der SoundPLAN GmbH durchgeführt. Hierzu wird ein dreidimensionales Rechenmodell mit allen maßgeblichen Geräuschquellen, den relevanten schallabschirmenden und schallreflektierenden Objekten (z.B. Gebäude), die zu betrachtenden Immissionsorte sowie die topografischen Gegebenheiten erstellt.

Die Beurteilungspegel L, für die durch das Vorhaben verursachten Geräuschimmissionen wurden auf der Grundlage der in Kapitel 3 beschriebenen Emissionsansätze und den hier beschriebenen zugrunde liegenden Gleichungen gemäß Formel G2 der TA Lärm ermittelt:

$$L_r = 10 \log \left[\frac{1}{T_r} \sum_{j=1}^{N} T_j \cdot 10^{0.1(L_{Aeq,j} - C_{met} + K_{T,j} + K_{I,j} + K_{R,j})} \right]$$

$$T_r = \sum_{j=1}^{N} T_j = 16 \text{ h tags, 1 h nachts}$$

 T_i Teilzeit j

Ν Anzahl der Teilzeiten

Mittelungspegel während Teilzeit $T_j \triangleq L_{AT}(DW)$ nach DIN ISO 9613-2 Gleichung 5

meteorologische Korrektur nach DIN ISO 9613-2 Gleichung 6

Zuschlag für Ton- und Informationshaltigkeit nach Nr. A.2.5.2 / A.3.3.5 in der Teilzeit j $K_{T,i}$

 $K_{l,i}$ Zuschlag für Impulshaltigkeit nach Nr. A.2.5.3 / A.3.3.6 in der Teilzeit j

 $K_{R,i}$ Zuschlag für Ruhezeiten nach Nr. 6 in der Teilzeit j

Die Zuschläge K_T und K_I nach TA Lärm [1] für die Impuls-, Ton- oder Informationshaltigkeit wurden im Sinne der Prognosesicherheit bereits bei der Ermittlung der Geräuschemissionspegel berücksichtigt. Ebenso wurden ggf. erforderliche Ruhezeitenzuschläge K_R bei den Ausbreitungsberechnungen zur rechnerischen Ermittlung der Beurteilungspegel im Rechenmodell berücksichtigt. Somit sind zu den ermittelten Beurteilungspegeln keine weiteren Zu- und Abschläge mehr anzuwenden.

Berechnungsergebnisse und Beurteilung der Geräuschimmissionen

Die Beurteilungspegel für die Betriebsgeräusche aus dem gesamten Geltungsbereich des Bebauungsplanes Nr. 38 wurden auf der Grundlage der aufgeführten Angaben zur maßgebenden Betriebsweise sowie der beschriebenen und ermittelten Emissionsansätze gemäß Kapitel 3 ermittelt.

Die Berechnungsergebnisse sind in der Tabelle 7 zusammengefasst und den jeweils geltenden Immissionsrichtwerten der TA Lärm [1] an den einzelnen Immissionsorten gegenübergestellt. Die Berechnungsgrundlagendaten und -ergebnisse sind im Detail den Anhängen 4 (Regelbetrieb mit Abholung Gärrest) und 7 (Regelbetrieb mit Maisernte) zu entnehmen.

Tabelle 7: Immissionsrichtwerte und Beurteilungspegel nach TA Lärm

IO-Nr.	Adresse/Bezeichnung		TA Lärm B(A)	gel Betri ation R trieb mi	ungspe- iebssitu- egelbe- t Abho- ärrest dB(A)	gel Betri ation R trieb m eri	ungspe- iebssitu- egelbe- it Mais- nte dB(A)
		tags	nachts	tags	nachts	tags	nachts
01	Edith-Stein-Ring 37	55	40	32	30	33	30
02	Pater-Augustin-Straße	55	40	32	30	33	30
03	mögliche Baugrenze (potenzielles Wohngebiet)	55	40	35	33	36	33

Wie die Berechnungsergebnisse zeigen, werden im Tages- und Nachtzeitraum die geltenden Immissionsrichtwerte der TA Lärm an allen betrachteten Immissionsorten und in beiden Betriebssituationen um mindestens 7 dB unterschritten. Somit trägt die Zusatzbelastung durch das hier untersuchte Plangebiet im Sinne der Nr. 3.2.1 der TA Lärm tags und nachts nicht relevant zur Gesamtgewerbelärmsituation bei. Eine Betrachtung der Geräuschvorbelastung durch weitere Anlagen, die der TA Lärm unterliegen, ist nach Nr. 3.2.1 der TA Lärm bei den gegebenen Unterschreitungen der Richtwerte nicht erforderlich.

Spitzenpegelbetrachtung

Im Rahmen der schalltechnischen Untersuchung wurde auch geprüft, ob eine Überschreitung der geltenden Immissionsrichtwerte (s. Kapitel 2) durch kurzzeitige Geräuschspitzen während der Tageszeit um mehr als 30 dB und nachts um mehr als 20 dB auszuschließen ist. Kurzzeitige Geräuschspitzen im Sinne der TA Lärm sind durch Einzelereignisse hervorgerufene Maximalwerte des Schalldruckpegels (L_{AFmax}), die im bestimmungsgemäßen Betriebsablauf auftreten. Relevante Geräuschspitzen können bei den in Kapitel 3 beschriebenen Betriebsvorgängen auftreten. Die Berechnungsergebnisse hierzu in den Anhängen 4 und 7 zeigen, dass die zulässigen Werte ebenfalls deutlich unterschritten werden.

Zusammenfassend kann festgestellt werden, dass auf der Grundlage der Bewertungskriterien der TA Lärm durch die hier betrachtete Gesamtanlage keine schädlichen Umwelteinwirkungen durch Geräusche in der Nachbarschaft verursacht werden.

6. Angaben zur Qualität der Prognose

Nach der technischen Anleitung zum Schutz gegen Lärm (TA Lärm) [1] ist die Geräuschimmissionsprognose in einem Bericht darzustellen, der neben den Datengrundlagen und dem Prognoseverfahren auch Angaben über die Qualität der Prognose enthält. Zur Qualität der Prognose ist folgendes anzugeben.

Datengrundlagen

Die Ansätze zu den Betriebsbedingungen (Betriebszeiten, Auslastungen und Frequentierungen) wurden auf der Grundlage von Betreiberangaben und von Erfahrungswerten im Sinne der Prognosesicherheit der oberen Erwartungsgrenze entsprechend gewählt.

Die Grundlagendaten zu den Geräuschemissionen der relevanten Quellen basieren auf Angaben aus anerkannten schalltechnischen Studien und technischen Berichten und können als gesicherte Erfahrungswerte angesehen werden. Durch die Berücksichtigung von Zuschlägen für die Impuls-, Ton- oder Informationshaltigkeit bereits im Emissionsansatz werden die Geräuschimmissionen an den Immissionsorten tendenziell überschätzt, da sich die Zuschläge für die einzelnen Geräuschquellen im Beurteilungspegel kumulieren. Darüber hinaus wird sich die Höhe der ggf. erforderlichen Zuschläge in der Regel auf dem Ausbreitungsweg von der Quelle zum Immissionsort abschwächen und somit unterhalb der emissionsseitig ermittelten Werte liegen. Daher ist davon auszugehen, dass die tatsächlich zu erwartenden Geräuschimmissionen unterhalb der hiernach berechneten Werte liegen.

Als Datengrundlage wurden weiterhin eigene, in der Betriebsstätte erfasste Messwerte verwendet. Die Messungen wurden mit einem geeichten Präzisionsschallpegelmesser der Klasse 1 durchgeführt. Bei der messtechnischen Ermittlung der Geräuschemissionen sind zur Bewertung der Qualität der Prognose die Auslastung der Anlage, die Streuung der relevanten Geräuschemissionen der Anlage sowie sonstige Einflussparameter während den Messungen zu berücksichtigen. Die Anlage war in den aufgenommenen Bereichen nach Angaben des Betreibers und nach eigener Feststellung in einem repräsentativen Vollbetrieb. Bei den Messungen im Nahbereich der einzelnen Anlagen herrschten keine, die Messungen beeinflussenden Witterungsbedingungen vor. Einzelne Messwerte können geringe, nicht weiter eliminierbare Fremdgeräuschanteile benachbarter Geräuschquellen enthalten. In diesen Fällen wird die Emission der Geräuschquelle tendenziell überschätzt.

Prognoseverfahren

Die Dämpfung von Schall, der sich im Freien zwischen einer Schallquelle und dem jeweiligen Immissionsort ausbreitet, unterliegt Schwankungen in den Witterungsbedingungen auf dem Ausbreitungsweg sowie durch Dämpfung oder Abschirmung des Schalls durch Boden, Bewuchs und Hindernisse. Zur Bestimmung dieser Einflussgrößen verweist die TA Lärm auf das Prognoseverfahren der DIN ISO 9613-2 [20]. In dieser Norm wird eine geschätzte Unsicherheit für die Berechnung der Immissionspegel L_{AT}(DW) mit breitbandig emittierenden Geräuschquellen angegeben. Da dieses Prognoseverfahren der Genauigkeitsklasse 2 entspricht, kann davon ausgegangen werden, dass sich die Schätzung der Unsicherheit auf einen Bereich von ± 2 Standardabweichungen bezieht. Somit entspricht die Genauigkeitsschätzung der DIN ISO 9613-2 einer Standardabweichung von 0,5 dB bzw. 1,5 dB.

Qualität der Prognose

Zusammenfassend ist davon auszugehen, dass die ermittelten Beurteilungspegel im oberen Vertrauensbereich liegen und das Untersuchungsergebnis zur sicheren Seite hin einzuschätzen ist.

Bericht-Nr. S07230022-1 • 20.10.2023

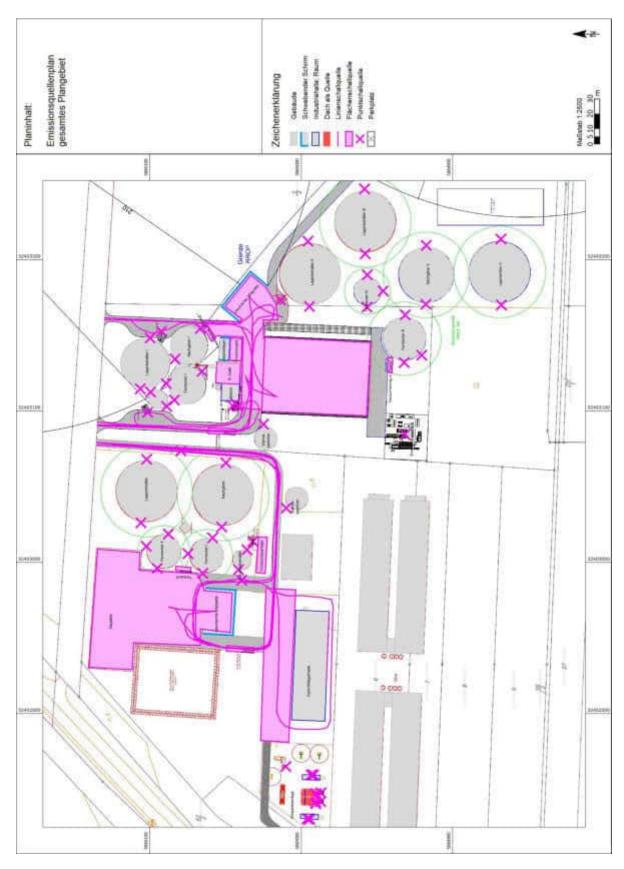
7. Grundlagenverzeichnis

- [1] Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm) vom 26.08.1998, geändert durch Verwaltungsvorschrift vom 01.06.2017 (BAnz AT 08.06.2017 B5) 2017
- [2] Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz -BImSchG) in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBI. I S. 1274) - 2013
- [3] DIN 4109 Schallschutz im Hochbau, Teil 1: Mindestanforderungen Januar 2018
- [4] Baunutzungsverordnung in der Fassung der Bekanntmachung vom 21. November 2017 (BGBI. I S. 3786), die durch Artikel 2 des Gesetzes vom 14. Juni 2021 (BGBI. I S. 1802) geändert worden ist
- [5] Gemeinde Börger, Abstimmung der Immissionsorte und deren Schutzanspruch Besprechung mit allen Planungsbeteiligten am 02.06.2023
- [6] Orts-, Mess- und Besprechungstermin: Aufnahme der örtlichen Gegebenheiten, Messungen im Bereich der technischen Anlagen sowie in den relevanten Betriebsbereichen und Besprechung der zu berücksichtigenden Betriebssituationen - 24.08.2022
- [7] Sound Plan GmbH, Immissionsprognosesoftware SoundPlan Version 9.0 mit Update vom 12.10.2023
- [8] Wilfried Sievers, Planunterlagen (Lagepläne, Ansichten, technische Daten und Betriebsbeschreibung) zur geplanten Kartoffellagerhalle E-Mails im August 2023
- [9] Consentis Anlagenbau GmbH, Planunterlagen (Lagepläne, Ansichten, technische Daten und Betriebsbeschreibung) zur Erweiterung der Biogasanlage, zur geplanten Biogasanlage und zur geplanten Biomethanaufbereitungsanlage E-Mails im Oktober 2023
- [10] EWE Netz GmbH, Planunterlagen (Lagepläne, Ansichten, technische Daten und Betriebsbeschreibung) zur geplanten Einspeiseanlage E-Mails im September 2023
- [11] DIN EN 61672-1 Elektroakustik Schallpegelmesser Teil 1: Anforderungen Januar 2013
- [12] DIN EN IEC 60942 Elektroakustik Schallkalibratoren Juli 2018
- [13] DIN EN 12354-4 Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften, Teil 4: Schallübertragung von Räumen ins Freie November 2017
- [14] DIN EN ISO 3740 Akustik: Bestimmung der Schallleistungspegel von Geräuschquellen, Leitlinien zur Anwendung der Grundnormen März 2001
- [15] Technischer Bericht zur Untersuchung der LKW- und Ladegeräusche auf Betriebsgeländen von Frachtzentren, Auslieferungslagern und Speditionen, Hessische Landesanstalt für Umwelt, Heft 192 - Mai 1995
- [16] Technischer Bericht zur Untersuchung der Geräuschemissionen durch Lastkraftwagen auf Betriebsgeländen von Frachtzentren, Auslieferungslagern, Speditionen und Verbrauchermärkten, Hessisches Landesamt für Umwelt und Geologie Lärmschutz in Hessen, Heft 3 - 2005
- [17] Parkplatzlärmstudie Empfehlungen zur Berechnung von Schallemissionen aus Parkplätzen, Autohöfen und Omnibusbahnhöfen sowie von Parkhäusern und Tiefgaragen, Bayerisches Landesamt für Umwelt 6. überarbeitete Auflage 2007
- [18] Merkblätter Nr. 25 Leitfaden zur Prognose von Geräuschen bei der Be- und Entladung von LKW Geräuschemissionen und -immissionen bei der Be- und Entladung von Containern und Wechselbrücken, Silofahrzeugen [...], Landesumweltamt Nordrhein-Westfalen 2000

- [19] Technischer Bericht zur Untersuchung der Geräuschemissionen von Anlagen zur Abfallbehandlung und -verwertung sowie Kläranlagen, Hessisches Landesamt für Umwelt und Geologie Lärmschutz in Hessen, Heft 1 2002
- [20] DIN ISO 9613-2 Akustik: Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2: Allgemeines Berechnungsverfahren Oktober 1999

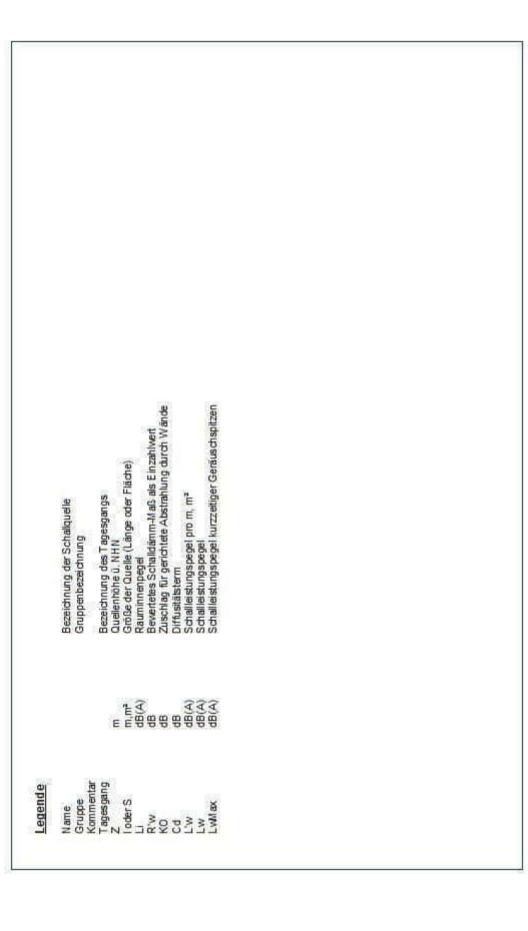
8. Abkürzungen und Begriffe

Gebietsnutzungen Kleinsiedlungsgebiet WR - Reines Wohngebiet WA - Reines Wohngebiet WB - Besonderes Wohngebiet MI - Mischgebiet MK - Kerngebiet MD - Dorfgebiet MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Krankenhaus SOB - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Aaum A _{aum} dB Dämpfung aufgrund von Abschirmung Ab _{aur} dB Dämpfung aufgrund von Abschirmung A _{du} Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich vor Tei	Zeichen	Einheit	Bedeutung
WS - Kleinsiedlungsgebiet WR - Reines Wohngebiet WA - Allgemeines Wohngebiet WB - Besonderes Wohngebiet MI - Mischgebiet MK - Kerngebiet MM - Dorfgebiet MD - Dorfgebiet MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Krankenhaus SOB - Sondergebiet - Krankenhaus SOB - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe A₂m dB Dämpfung aufgrund von Luftabsorption A♭ar dB Dämpfung aufgrund von Abschirmung Ad₁v dB Dämpfung aufgrund geometrischer Ausbreitung Aq₁v dB Dämpfung aufgrund geometrischer Ausbreitung Aq₁v dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund des Bodeneffektes C₀ dB Dämpfung aufgrund des Bodeneffektes C₁ dB Dämpfung aufgrund verschiedener anderer Effekte C₀ dB Dämpfung aufgrund verschiedener anderer Effekte C₀ dB Lokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand C₀ dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteil-gruppe Cmet dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück i zum Immissionsort D₀ dB Pegeländerung durch topografische und bauliche Gegebenheite D₀ dB Dämpfung sung daren der Abschirmung (VDI 2714) D₁kss,w dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) D₁kss,w dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) D₁kss,w dB Richtwirkungsmaß für den Ausbreitungsweg	Gebietsnutzu	ungen	
WA - Allgemeines Wohngebiet WB - Besonderes Wohngebiet MI - Mischgebiet MK - Kerngebiet MD - Dorfgebiet MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustrische Größen und Begriffe Athan dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Abar dB Dämpfung aufgrund von Abschirmung Aflov dB Dämpfung aufgrund von Abschirmung Aflov dB Dämpfung aufgrund von Abschirmung Aflor dB Dämpfung aufgrund von Abschirmung Agr dB Dämpfung aufgrund von Abschirmung		<u> </u>	Kleinsiedlungsgebiet
WB - Besonderes Wohngebiet MI - Mischgebiet MK - Kerngebiet MD - Dorfgebiet MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Attenkenhaus Abar dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Abar dB Dämpfung aufgrund von Abschirmung Adword dB Dämpfung aufgrund von Luftabsorption At_in.ks.w dB Dämpfung aufgrund von Luftabsorption At_in.ks.w dB Dämpfung aufgrund von Luftabsorption	WR	-	Reines Wohngebiet
MII - Mischgebiet MK - Kerngebiet MD - Dorfgebiet MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Krankenhaus SOK - Sondergebiet - Büro/Verwaltung Austrische Größen und Begriffe Aum dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Afth.ks.w dB Dämpfung aufgrund geometrischer Ausbreitung Aqur dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrflächenzustand CC0 dB Iokaler Meteorologie-Faktor CD dB Meteorologie-Faktor CD dB Dämpfung bi der Schallausbreitung vom Fahrstreifenteilstück iz zum Immissionsort DB dB Dämpfung bi der Schallausbreitung vom Fahrstreifenteilstück iz zum Immissionsort DB dB Bichtwirkungsmaß für den Ausbreitungsmaß Di _{lks,w} dB Richtwirkungsmaß für den Ausbreitung vom Fahrstreifenteilstück iz zum Immissionsort DB dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) Di _{lks,w} dB Richtwirkungsmaß für den Ausbreitungsweg	WA	-	Allgemeines Wohngebiet
MK - Kerngebiet MD - Dorfgebiet MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Kindertagestätte SOK - Dämpfung aufgrund ven Luftabsorption Austreiturien Austreiturien Austreiturien	WB	-	Besonderes Wohngebiet
MD - Dorfgebiet MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Krankenhaus SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Akustische Größen und Begriffe A _{dum} dB Dämpfung aufgrund von Luftabsorption A _{bar} dB Dämpfung aufgrund von Abschirmung A _{div} dB Dämpfung aufgrund von Abschirmung A _{div} dB Dämpfung aufgrund geometrischer Ausbreitung A _{fih,ks,w} dB Dämpfung aufgrund geometrischer Ausbreitung A _{fih} dB Dämpfung aufgrund des Bodeneffektes A _{misc} dB Dämpfung aufgrund verschiedener anderer Effekte C ₀ dB Dömpfung aufgrund verschiedener anderer Effekte	MI	-	Mischgebiet
MU - Urbanes Gebiet GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Krankenhaus SOK - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Sondergebiet - Büro/Verwaltung Abar dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Abar dB Dämpfung aufgrund geometrischer Ausbreitung Aft,nks.w dB Dämpfung aufgrund geometrischer Ausbreitung Agr dB Dämpfung aufgrund des Bodeneffektes Agr dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Dömpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrflächenzustand	MK	-	Kerngebiet
GE - Gewerbegebiet GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Astm dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung Af,h,ks,w dB Dämpfung aufgrund des Bodeneffektes Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrflächenzustand Co dB Iokaler Meteorologie-Faktor	MD	-	Dorfgebiet
GI - Industriegebiet AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Kindertagesstätte SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Aalm dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Adjlv dB Dämpfung aufgrund geometrischer Ausbreitung Aflik, dB Dämpfung aufgrund geometrischer Ausbreitung Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand Co dB Iokaler Meteorologie-Faktor Co dB Iokaler Meteorologie-Faktor	MU	-	Urbanes Gebiet
AU - Unbeplanter Außenbereich SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Aalm dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung Aflik,ks,w dB Dämpfung aufgrund des Bodeneffektes Agr dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrbahnart C2 dB Korrektur für Fahrflächenzustand C0 dB Iokaler Meteorologie-Faktor	GE	-	Gewerbegebiet
SOW - Sondergebiet - Wohnnutzung SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Aatm dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich vor Teilstück längs des Weges Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand Co dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor DG dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor DM dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor CD dB Iokaler Meteorologie-Faktor DM dB Iokaler Meteorologie-Faktor	GI	-	Industriegebiet
SOS - Sondergebiet - Schule SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Aatum dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung Afinks,w dB Dämpfung aufgrund geometrischer Ausbreitung Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrbahnart C2 dB Korrektur für Fahrflächenzustand C0 dB Iokaler Meteorologie-Faktor C0 dB Diffusitätsterm für das Innenschallfeld	AU	-	Unbeplanter Außenbereich
SOT - Sondergebiet - Kindertagesstätte SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe A _{atm} dB Dämpfung aufgrund von Luftabsorption A _{bar} dB Dämpfung aufgrund von Abschirmung A _{div} dB Dämpfung aufgrund geometrischer Ausbreitung A _{f,h,ks,w} dB Dämpfung aufgrund geometrischer Ausbreitung A _{r,h,ks,w} dB Dämpfung aufgrund des Bodeneffektes A _{misc} dB Dämpfung aufgrund des Bodeneffektes A _{misc} dB Dämpfung aufgrund verschiedener anderer Effekte C ₀ dB lokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand C ₀ dB lokaler Meteorologie-Faktor C ₀ dB lokaler Meteorologie-Faktor C ₀ dB solaler Meteorologie-Faktor C ₀ dB lokaler Meteorologie-Faktor Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteil-gruppe C _{met} dB meteorologische Korrektur D _{A,i} dB Pegeländerung durch topografische und bauliche Gegebenheite D _{BM} dB Pegeländerung durch topografische und bauliche Gegebenheite D _{BM} dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) D _{I,ks,w} dB Richtwirkungsmaß für den Ausbreitungsweg	SOW	-	Sondergebiet - Wohnnutzung
SOK - Sondergebiet - Krankenhaus SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe Aatm dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung Af,h,ks,w dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich von Teilstück längs des Weges Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB lokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrbahnart C2 dB Korrektur für Fahrflächenzustand Co dB lokaler Meteorologie-Faktor CD dB meteorologie-Faktor CD dB Nokaler Meteorologie-Faktor	SOS	-	Sondergebiet - Schule
SOB - Sondergebiet - Büro/Verwaltung Akustische Größen und Begriffe A _{atm} dB Dämpfung aufgrund von Luftabsorption A _{bar} dB Dämpfung aufgrund von Abschirmung A _{div} dB Dämpfung aufgrund geometrischer Ausbreitung A _{f,h,ks,w} dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich von Teilstück längs des Weges A _{gr} dB Dämpfung aufgrund des Bodeneffektes A _{misc} dB Dämpfung aufgrund verschiedener anderer Effekte C ₀ dB Iokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrbahnart C2 dB Korrektur für Fahrflächenzustand C ₀ dB Iokaler Meteorologie-Faktor C _D dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteil-gruppe C _{met} dB meteorologische Korrektur D _{A,i} dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück i zum Immissionsort D _{BM} dB Pegeländerung durch topografische und bauliche Gegebenheite D _{BM} dB Binfügungsdämpfungsmaß der Abschirmung (VDI 2714)	SOT	-	Sondergebiet - Kindertagesstätte
Akustische Größen und Begriffe A _{atm} dB Dämpfung aufgrund von Luftabsorption A _{bar} dB Dämpfung aufgrund von Abschirmung A _{div} dB Dämpfung aufgrund geometrischer Ausbreitung A _{fiv} dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich von Teilstück längs des Weges A _{gr} dB Dämpfung aufgrund des Bodeneffektes A _{misc} dB Dämpfung aufgrund verschiedener anderer Effekte C ₀ dB lokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrflächenzustand C2 dB Korrektur für Fahrflächenzustand C ₀ dB Iokaler Meteorologie-Faktor C ₀ dB Iokaler Meteorologie-Faktor C _{met} dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteil-gruppe C _{met} dB meteorologische Korrektur D _{A,i} dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort D _B dB Pegeländerung durch topografische und bauliche Gegebenheite D _B	SOK	-	Sondergebiet - Krankenhaus
Aatm dB Dämpfung aufgrund von Luftabsorption Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung After dB Dämpfung aufgrund geometrischer Ausbreitung Apr dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich vom Teilstück längs des Weges Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrflächenzustand C2 dB Korrektur für Fahrflächenzustand C0 dB Iokaler Meteorologie-Faktor C0 dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmun	SOB	-	Sondergebiet - Büro/Verwaltung
Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung A _{div} dB Dämpfung aufgrund geometrischer Ausbreitung A _{f,h,ks,w} dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich von Teilstück längs des Weges A _{gr} dB Dämpfung aufgrund des Bodeneffektes A _{misc} dB Dämpfung aufgrund verschiedener anderer Effekte C ₀ dB lokaler Meteorologie-Faktor B - Bezugsgröße C1 dB Korrektur für Fahrbahnart C2 dB Korrektur für Fahrflächenzustand C ₀ dB Iokaler Meteorologie-Faktor C ₀ dB Iokaler Meteorologie-Faktor C _D dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteil-gruppe C _{met} dB meteorologische Korrektur D _{A,i} dB meteorologische Korrektur D _B dB Pegeländerung durch topografische und bauliche Gegebenheite D _{BM} dB Pegeländerung durch topografische und bauliche Gegebenheite D _B dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) <td>Akustische C</td> <td>Größen und Be</td> <td>egriffe</td>	Akustische C	Größen und Be	egriffe
Abar dB Dämpfung aufgrund von Abschirmung Adiv dB Dämpfung aufgrund geometrischer Ausbreitung After dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich von Teilstück längs des Weges Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand Co dB Iokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteil-gruppe Cmet dB meteorologische Korrektur DA,i dB meteorologische Korrektur DB dB Pegeländerung durch topografische und bauliche Gegebenheite DB dB Pegeländerung durch topografische und bauliche Gegebenheite DB dB Boden- und Meteorologiedämpfungsmaß der Abschirmung (VDI 2714) De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714)	A_{atm}	dB	Dämpfung aufgrund von Luftabsorption
Adiv dB Dämpfung aufgrund geometrischer Ausbreitung Af,h,ks,w dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich vom Teilstück längs des Weges Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand Co dB Iokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg	A_bar	dB	Dämpfung aufgrund von Abschirmung
Agr dB Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich vor Teilstück längs des Weges Agr dB Dämpfung aufgrund des Bodeneffektes Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB Iokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand C0 dB Iokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg	A_{div}	dB	Dämpfung aufgrund geometrischer Ausbreitung
Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB lokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand Co dB lokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg		dB	Ausbreitungsdämpfungsmaß im Oktavband im Höhenbereich vom Teilstück längs des Weges
Amisc dB Dämpfung aufgrund verschiedener anderer Effekte Co dB lokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand Co dB lokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg	A_{gr}	dB	Dämpfung aufgrund des Bodeneffektes
Co dB lokaler Meteorologie-Faktor B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand C0 dB lokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg		dB	Dämpfung aufgrund verschiedener anderer Effekte
B - Bezugsgröße c1 dB Korrektur für Fahrbahnart c2 dB Korrektur für Fahrflächenzustand C0 dB lokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg		dB	lokaler Meteorologie-Faktor
c2 dB Korrektur für Fahrflächenzustand C0 dB lokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg		-	Bezugsgröße
C0 dB lokaler Meteorologie-Faktor CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg	c1	dB	Korrektur für Fahrbahnart
CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg	c2	dB	Korrektur für Fahrflächenzustand
CD dB Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteilgruppe Cmet dB meteorologische Korrektur DA,i dB Dämpfung bei der Schallausbreitung vom Fahrstreifenteilstück izum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg	C ₀	dB	lokaler Meteorologie-Faktor
Dampfung bei der Schallausbreitung vom Fahrstreifenteilstück i zum Immissionsort DB dB Pegeländerung durch topografische und bauliche Gegebenheite DBM dB Boden- und Meteorologiedämpfungsmaß DB dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DB dB Richtwirkungsmaß für den Ausbreitungsweg		dB	Diffusitätsterm für das Innenschallfeld am Bauteil/an der Bauteil- gruppe
DA,idBDämpfung bei der Schallausbreitung vom Fahrstreifenteilstück i zum ImmissionsortDBdBPegeländerung durch topografische und bauliche GegebenheiteDBMdBBoden- und MeteorologiedämpfungsmaßDedBEinfügungsdämpfungsmaß der Abschirmung (VDI 2714)DI,ks,wdBRichtwirkungsmaß für den Ausbreitungsweg	C _{met}	dB	meteorologische Korrektur
D _{BM} dB Boden- und Meteorologiedämpfungsmaß D _e dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) D _{I,ks,w} dB Richtwirkungsmaß für den Ausbreitungsweg	$D_{A,i}$	dB	·
DBMdBBoden- und MeteorologiedämpfungsmaßDedBEinfügungsdämpfungsmaß der Abschirmung (VDI 2714)DI,ks,wdBRichtwirkungsmaß für den Ausbreitungsweg	D _B	dB	Pegeländerung durch topografische und bauliche Gegebenheiten
De dB Einfügungsdämpfungsmaß der Abschirmung (VDI 2714) DI,ks,w dB Richtwirkungsmaß für den Ausbreitungsweg		dB	Boden- und Meteorologiedämpfungsmaß
D _{I,ks,w} dB Richtwirkungsmaß für den Ausbreitungsweg	D _e	dB	Einfügungsdämpfungsmaß der Abschirmung (VDI 2714)
		dB	Richtwirkungsmaß für den Ausbreitungsweg
D _I dB Richtwirkungsmaß		dB	
D _I dB Korrektur zur Berücksichtigung der Teilstücklänge (RLS-90)			<u>-</u>


Zeichen	Einheit	Bedeutung
D _{K,KT} (x)	dB	Korrektur für den Knotenpunkttyp KT in Abhängigkeit von der Entfernung x des Mittelpunkts des Fahrstreifenteilstücks zum Knotenpunkt
D_L	dB	Luftabsorptionsmaß
$D_{LN,FzG}(g,\!v_{FzG})$	dB	Längsneigungskorrektur für die Längsneigung g der Fahrzeug- gruppe FzG bei der Geschwindigkeit v _{FzG}
$D_{n,w}$	dB	bewertete Norm-Schallpegeldifferenz
D _S	dB	Abstandsmaß (VDI 2714)
D _S	dB	Pegeländerung zur Berücksichtigung des Abstandes und der Luftabsorption (DIN ISO 9613-2)
$D_{SD,SDT,FzG}(v_{FzG})$	dB	Korrektur für den Straßendeckschichttyp SDT je FzG und Geschwindigkeit v_{FzG}
$D_{refl}(h_{Beb},w)$	dB	Zuschlag für Mehrfachreflexion bei einer Höhe der Stützmauern, Lärmschutzwände oder Hausfassaden h _{Beb} und den Abstand der reflektierenden Flächen w
D _{RV1/2,i}	dB	anzusetzender Reflexionsverlust bei der ersten Reflexion für das Fahrstreifenteilstück i (nur bei Spiegelschallquellen)
D _{Stg}	dB	Zuschlag für unterschiedliche Steigungen und Gefälle
D _{StrO}	dB	Korrektur für unterschiedliche Straßenoberflächen
DTV	KFZ/24h	Durchschnittliche tägliche Verkehrsstärke (alle Tage des Jahres)
D _v	dB	Korrektur für unterschiedliche zulässige Höchstgeschwindigkeiten
$D_{\Omega,ks}$	dB	Raumwinkelmaß
f	-	Stellplätze je Einheit der Bezugsgröße B
FzG	-	Fahrzeuggruppe
IFSP	-	Immissionswirksamer flächenbezogener Schallleistungspegel
IGW	-	Immissionsgrenzwert
Ю	-	Immissionsort
IRW	-	Immissionsrichtwert
K	dB	Zuschlag für die erhöhte Störwirkung von lichtzeichengeregelten Kreuzungen und Einmündungen
K _{Ai}	dB	Korrekturwert der A-Bewertungskurve nach DIN EN 60651 in der Terz j
K _{AL}	dB	Korrekturwert Außenlärm
K _{Br}	dB	kombinierte Brücken- und Fahrbahnkorrektur
K _D	dB	Pegelerhöhung infolge des Durchfahr- und Parksuchverkehrs
K _I	dB	Zuschlag für Impulshaltigkeit und/oder auffällige Pegeländerungen
K _{LM}	dB	Korrektur für Schallschutzmaßnahmen an Brücken
K_{O}/K_{Ω}	dB	Raumwinkelmaß
K _{PA}	dB	Zuschlag für die Parkplatzart
K _R	dB	Zuschlag für Tageszeiten mit erhöhter Empfindlichkeit (Ruhezeiten)
K _{Raumart}	dB	Korrekturfaktor in Abhängigkeit der Raumnutzung
K _s	dB	Pegelkorrektur Straße – Schiene von -5 dB
k _s	-	Zähler für Teilstück oder einen Abschnitt davon
K _{StrO}	dB	Zuschlag für unterschiedliche Fahrbahnoberflächen beim zusammengefassten Verfahren der Parkplatzlärmstudie
K _{StrO} *	dB	Zuschlag für unterschiedliche Fahrbahnoberflächen beim getrennten Verfahren der Parkplatzlärmstudie

Zeichen	Einheit	Bedeutung
K _T	dB	Zuschlag für Ton- und Informationshaltigkeit
L _{AF}	dB(A)	A-bewerteter Schallpegel mit der Zeitbewertung "Fast"
L _a	dB(A)	Maßgeblicher Außenlärmpegel
$L_{Am}(S_m)$	dB(A)	Mittelungspegel am Immissionsort
L _{AT} (DW)	dB(A)	äquivalenter A-bewerteter Dauerschalldruckpegel bei Mitwind
L _{AT} (LT)	dB(A)	äquivalenter A-bewerteter Dauerschalldruckpegel im langfristigen Mittel
L _{CF}	dB(C)	C-bewerteter Schallpegel mit der Zeitbewertung "Fast"
L_{eq}	dB	energieäquivalenter Pegel
L _{fT} (DW)	dB	äquivalenter Oktavband-Dauerschalldruckpegel bei Mitwind
L _{HS}	dB	Hörschwellenpegel
L _{m,E}	dB(A)	Emissionspegel von einem Teilstück in 25 m Abstand zur Mitte des jeweils nächstgelegenen Fahrstreifens
L _{m,i}	dB(A)	Mittelungspegel von einem Teilstück in 25 m Abstand zur Mitte des jeweils nächstgelegenen Fahrstreifens
L _{m,innen}	dB(A)	Mittlerer Innenpegel
L _{AFm}	dB	A-bewerteter Mittelungspegel mit der Zeitbewertung "Fast"
L _m	dB	Mittelungspegel von einer Straße
L _{max}	dB	Maximalpegel
L_p,in	dB	Schalldruckpegel im Abstand von 1 m bis 2 m vor der Innenseite des Außenbauteils oder der Bauteilgruppe
L_p	dB	Schalldruckpegel
$L_{r,xh}$	dB(A)	Beurteilungspegel bezogen auf x Stunden
L _r	dB(A)	Beurteilungspegel
L _{rA}	dB(A)	Beurteilungspegel in der abendlichen Ruhezeit
L _{rMo}	dB(A)	Beurteilungspegel in der morgendlichen Ruhezeit
L_{rN}	dB(A)	Beurteilungspegel im Nachtzeitraum
L_{rT}	dB(A)	Beurteilungspegel im Tageszeitraum
L_{rTaR}	dB(A)	Beurteilungspegel tagsüber außerhalb der Ruhezeiten
$L_{Terz,eq}$	dB	Z-bewerteter äquivalenter Mittelungspegel in den Terzbändern
L _{Terz,max}	dB	Z-bewerteter Maximalpegel in den Terzbändern
L _{Terz,r}	dB	Terz-Beurteilungspegel
L _{W,xh}	dB	Schallleistungspegel bezogen auf x Stunden
L _W	dB	Schallleistungspegel
L _W '	dB	längenbezogener Schallleistungspegel
L _W "	dB	flächenbezogener Schallleistungspegel
L _{W0}	dB(A)	Ausgangsschallleistungspegel für eine Bewegung/h
L _{WA,f,h,ks}	dB(A)	A-bewerteter Schallleistungspegel der Punktschallquelle in der Mitte des Teilstücks, das die Emission aus dem Höhenbereich angibt
L _{WAm}	dB(A)	Schallleistungspegel bzw. durch Gebäude-Außenhautelement ins Freie abgestrahlter Schallleistungspegel
L _{WT}	dB	Schallleistungspegel inkl. Zuschlag für Impulshaltigkeit
$L_{W0,FzG}(v_{FzG})$	dB	Grundwert für den Schallleistungspegel eines Fahrzeuges der Fahrzeuggruppe FzG bei der Geschwindigkeit v _{FzG}
$L_{W,FzG}(v_{FzG})$	dB	Schallleistungspegel für die Fahrzeuge der Fahrzeuggruppe FzG (Pkw, Lkw1 und Lkw2) bei der Geschwindigkeit v _{FzG}

Zeichen	Einheit	Bedeutung
M	-	mittlere Anzahl von Fahrzeugbewegungen in einer Stunde (RLS-90)
M_T/M_N	KFZ/h	Stündliche Verkehrsstärke der Quelllinie tags/nachts
N	-	Bewegungshäufigkeit je Stunde und Bezugsgröße
n / N	-	Anzahl
p_T/p_N	%	LKW-Anteil > 2,8 t zulässiges Gesamtgewicht tags/nachts (RLS-90)
p ₁ , p ₂	%	Anteil an Fahrzeugen der FzG Lkw1 bzw. Lkw2
R' _{w,ges}	dB	Gesamtes bewertetes Bau-Schalldämm-Maß der Außenbauteile
R' _w	dB	Bewertetes Bau-Schalldämm-Maß (mit flankierender Übertragung)
R_{w}	dB	Bewertetes Schalldämm-Maß (ohne flankierender Übertragung)
RLS-19	-	Berechnungsgrundlage Straßenverkehr (Anlage 1 der 16. Blm-SchV)
RLS-90	-	Berechnungsgrundlage Straßenverkehr (Anlage 1 der 16. Blm-SchV)
S	m²	Fläche des Gebäude-Außenhautelements
Schall 03	-	Berechnungsgrundlage Schienenverkehr (Anlage 2 der 16. Blm-SchV))
SOW		Schalltechnischer Orientierungswert
T _i	h	Teilzeit
T _r	h	Beurteilungszeitraum
V _{FzG}	km/h	Geschwindigkeit für die Fahrzeuge der Fahrzeuggruppe FzG
V _{max}	km/h	zulässige Streckengeschwindigkeit in km/h
v _{PKW} / v _{LKW}	km/h	zulässige Höchstgeschwindigkeit für PKW/LKW


Anhang

Anhang 1: Emissionsquellenplan

Anhang 2: Berechnung der Geräuschemissionen - Situation Regelbetrieb mit Abholung Gärrest

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Abholung Gärrest

Name	Gruppe	Kommentar	Tagesgang	Z	I oder S	5	Marie	KO	PO	3	LW	LWMex
				E	#H,H	dB(A)	쁑	æ	8	dB(A)	dB(A)	dB(A)
Betriebshalle-Dach	BGA Bestand	Sandwichpaneele	24 h - 100%	28,6	223,4	70,0	25,0	0'0	67	50,3	73,8	
Betriebshale-Fas. Nord	BGA Bestand	Sandwichpaneele	24 h - 100%	23,7	84,6	70,0	25,0	3,0	67	50,3	69,6	
Betriebshale-Fas. Ost	BGA Bestand	Sandwichpaneele	24 h - 100%	24,6	124,0	70,0	25,0	3,0	67	50,3	71,2	
Betriebshale-Fas. Süd	BGA Bestand	Sandwichpaneele	24 h - 100%	24,0	54,8	70,0	25,0	3,0	67	50,3	67.7	
Betriebshalle-Fas. Süd; Tor	BGA Bestand	offen	24 h - 100%	23,0	20,3	70,0		3,0	67	67,0	80,1	
BHKW-Fas. Sūd; Tür	BGA Bestand		24 h - 100%	22,0	6,3	95,0	20,0	3,0	67	74,4	82,3	
BHKW Abluff 1	BGA Bestand	in Fassade Nord	24 h - 100%	25,0	1,0			3,0		70,0	70,0	
BHKW Abluft 2	BGA Bestand	in Fassade Nord	24 h - 100%	25,0	1.0			3,0	114	70,0	70,0	
BHKW Zuluft 1	BGA Bestand	in Fassade Süd	24 h - 100%	24,9	9'0			3,0	F	68,1	65,0	
BHKW Zuluft 2	BGA Bestand	in Fassade Süd	24 h - 100%	25,0	1,0			3,0	(Fe	65,0	65,0	
Dachlüfter 1 Annahmebehälter	BGA Bestand		24 h - 100%	25,8				0,0	(H	85.0	85,0	
Dachlüfter 1 Fermenter I	BGA Bestand		24 h - 100%	25,6	110			0,0	(14	85.0	85,0	
Dachlüfter 1 Fermenter III	BGA Bestand		24 h - 100%	25,7	- 14			0,0	(14	85.0	85,0	
Dachlüfter 1 Fermenter IV	BGA Bestand		24 h - 100%	25,6				0,0	(14	85.0	85,0	
Dachlüffer 1 Lagerbehälter I	BGA Bestand	. 3	24 h - 100%	25,8				0,0	17	85.0	85,0	
Dachlüffer 1 Lagerbehälter II	BGA Bestand		24 h - 100%	25,7				0,0	19	85.0	85,0	
Dachlüfter 1 Lagerbehälter III	BGA Bestand		24 h - 100%	25,5				0,0	(14	85.0	85,0	
Dachlüffer 1 Lagerbehälter IV	BGA Bestand	- 5	24 h - 100%	25,7				0,0	(14	85.0	85,0	
Dachlüffer 1 Nachgärer I	BGA Bestand	. 3	24 h - 100%	25,7				0,0	19	85.0	85,0	
Dachlüffer 1 Nachgärer II	BGA Bestand	- 5	24 h - 100%	25,6				0,0	(14	85.0	85,0	
Dachlüffer 2 Annahmebehälter	BGA Bestand		24 h - 100%	25,8				0,0	(14	85.0	85,0	
Dachlüfter 2 Fermenter I	BGA Bestand	- 5	24 h - 100%	25,6				0,0	(14	85.0	85,0	
Dachlüfter 2 Fermenter III	BGA Bestand		24 h - 100%	25,5				0,0	114	85.0	85,0	
Dachlüfter 2 Fermenter IV	BGA Bestand		24 h - 100%	25,6				0,0	(14	85.0	85,0	
Dachlüffer 2 Lagerbehälter I	BGA Bestand		24 h - 100%	25,8				0,0	(14	85.0	85,0	
Dachlüffer 2 Lagerbehälter II	BGA Bestand	- 5	24 h - 100%	25,6				0,0	19	85.0	85,0	
Dachlüfter 2 Lagerbehälter III	BGA Bestand	- 5	24 h - 100%	25,4				0,0	277	85.0	85,0	
Dachlüffer 2 Lagerbehälter IV	BGA Bestand		24 h - 100%	25,5				0,0	0190	85.0	85,0	1,5

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Abholung Gärrest

Name	Gruppe	Kommentar	Tagesgang	Z	l oder S	ם	RW	KO	PO	Z.	LW	LWMex
				E	m,m	dB(A)	쁑	田田	8	dB(A)	(B(A)	dB(A)
Dachlüffer 2 Nachgärer I	BGA Bestand		24 h - 100%	25,7				0,0	1000	85.0	85,0	
Dachlüffer 2 Nachgärer II	BGA Bestand		24 h - 100%	25,4				0.0	2540	85.0	85,0	
Feststoffeintrag mit Flüssigfuttereinheit I	BGA Bestand		24 h - 10 Min/h (Feststoffeintrag)	22,1	28,7			0,0	20	80,4	95,0	
Feststoffeintrag mit Flüssigfuttereinheit II	BGA Bestand		24 h - 10 Min/h (Feststoffeintrag)	22,1	30,2			0,0	WATE.	80,2	95,0	0 0
Gārresttrocknungsanlage Regenis BGA Bestand GT	BGA Bestand		24 h - 100%	21,7	114,7			0,0	755	72,4	93,0	
Gasverdichter	BGA Bestand	westich BHKW	24 h - 100%	22,2	ET.			0'0	IT I	86,0	86,0	
Gemis chkühler BHKW 1	BGA Bestand	westich BHKW	24 h - 100%	21,7	11			0'0	in	87,0	87,0	
Gemis chkühler BHKW 2	BGA Bestand	westich BHKW	24 h - 100%	21,7	11			0,0	in the	87,0	87,0	
Lkw/Fz Ablippen Mist	BGA Bestand	5 Kfz tags	6-22 Uhr - 5 Kfz	21,7	257,4			0,0		63,3	87,4	107,3
Lkw/frz Fahrspur Ant Gülle	BGA Bestand	4 Kfz tags	6-22 Uhr - 4 Kfz	21,8	454,6			0,0		63,0	9'68	104,0
Lkw/frz Fahrspur Anl. Mist	BGA Bestand	5 Kfz tags	6-22 Uhr - 5 Kfz	21,8	404,2			0,0		63,0	89,1	104,0
Lkw/frz Pumpe Anl. Gülle	BGA Bestand	4 Kfz a 5 Minuten tags	6-22 Uhr - 20 Minuten	21,8	1			0,0	T.	109,6	109,6	
Lkw/IFz Stellgeräusch Waage Anl. BGA Bestand Gülle	BGA Bestand	4 Kfz tags	6-22 Uhr - 4 Kfz	21,6	67,2			0,0	3880	69,5	87,8	104,0
Lkw/IFz Stellgeräusch Waage Anl. BGA Bestand Mist	BGA Bestand	5 Kfz tags	6-22 Uhr - 5 Kfz	21,6	67,2			0,0	FR.	69,5	87.8	104,0
Radlader Beschickung Anlage	BGA Bestand	120 Minuten tags	6-22 Uhr - 120 Minuten	21,7	4882,2			0,0	ir i	1,07	107,0	111,0
Rührwerk Fermenter I	BGA Bestand		24 h - 20 Min/h (Rührwerke)	24,7				0,0	7.05	0,67	0,67	
Rührwerk Fermenter III	BGA Bestand	10 50	24 h - 20 Min/h (Rührwerke)	24,7	196 - 296 196 - 286			0,0	III III	0'62	79,0	10
Rührwerk Fermenter IV	BGA Bestand		24 h - 20 Min/h (Rührwerke)	24,6				0,0	755	0,67	0,67	
Stickstoffeinheit Wärmespeicher	BGA Bestand	am Behälter Wärmespeicher	24 h - 100%	21,7	11-			0,0	H2766	80,0	80,0	
BHKW Containeranlage (Fabrikat 2G)	BGA Planung		24 h - 100%	23,6	er a			0,0	57000	98,0	98,0	V
Dachlüffer 1. Annahmebehälter	BGA Planung		24 h - 100%	25,6				0'0	2410	85,0	85,0	

Vorabzug

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Abholung Gärrest

лаше	Gruppe	Kommentar	Tagesgang	Z	l oder S	-	Š	2	5	3	ě	LwMex
				E	m,m	dB(A)	쁑	粤	쁑	dB(A)	(A)(D)	dB(A)
Dachlüfter 1 Fermenter I	BGA Planung	H	24 h - 100%	25,8				0'0		0'58	85,0	
Dachlütter 1 Fermenter II	BGA Planung		24 h - 100%	26,0	17			0'0		0'58	85,0	
Dachlüffer 1 Lagerbehälter	BGA Planung		24 h - 100%	26,1	11			0'0		0'58	85,0	
Dachüffer 1 Nachgärer	BGA Planung		24 h - 100%	25,7	11			0'0	7	0'58	85,0	
Dachlüfter 2 Annahmebehälter	BGA Planung		24 h - 100%	25,6	17			0'0	77	0,28	85,0	
Dachlüfter 2 Fermenter I	BGA Planung		24 h - 100%	25,7	17		7	0'0	78	0'58	85,0	
Dachlütter 2 Fermenter II	BGA Planung		24 h - 100%	25,9	17			0'0	77	0,28	85,0	
Dachlüffer 2 Lagerbehälter	BGA Planung		24 h - 100%	25,9	1		7	0'0	71	0'58	85,0	
Dachüffer 2 Nachgärer	BGA Planung		24 h - 100%	25,5	11			0'0	7	0'58	85,0	
Feststoffeintrag mit Flüssigfuttereinheit	BGA Planung		24 h - 10 Min/h (Feststoffeintrag)	22,2	28,7			0,0	6500	80,4	95,0	
Gärrestrocknungsanlage Regenis BGA Planung	BGA Planung		24 h - 100%	21,5	142,0			0,0	AT ESA	71,5	93,0	
Lkw/Fz Abkippen Mist	BGA Planung	5 Kfz tags	6-22 Uhr - 5 Kfz	21,8	183,6			0'0	77	64,8	87,4	107,3
Lkw/Fz Fahrspur Ant Gülle	BGA Planung	1 Kfz tags	6-22 Uhr - 1 Kfz	21.7	749,4			0'0	72	63,0	91,8	104,0
Lkw/IFz Fahrspur Anl. Mist	BGA Planung	5 Kfz tags	6-22 Uhr - 5 Kfz	21,8	684,2		- 7	0'0	72	63,0	91,4	104,0
Lkw/Fz Pumpe Anl. Gülle	BGA Planung	1 Kfz a 5 Minuten tags	6-22 Uhr - 5 Minuten	21,6	7			0'0	77	109,6	109,6	
Lkw/Fz Stellgeräusch Waage Anl BGA Planung Gülle	BGA Planung	1 Kfz tags	6-22 Uhr - 1 Kfz	21,9	63,6			0,0	70.27	8,69	87.8	104,0
Lkw/Fz Stellgeräusch Waage Anl. BGA Planung Mist.	BGA Planung	5 Kfz tags	6-22 Uhr - 5 Kfz	21,9	63,6			0,0	JWHR.	8'69	87,8	104,0
Radlader Beschickung Anlage	BGA Planung	120 Minuten tags	6-22 Uhr - 120 Minuten	22,1	4758,7			0,0	THE CO.	70,2	107,0	111,0
Rührwerk Fermenter I	BGA Planung		24 h - 20 Min/h (Rührwerke)	24,8	11 TI			0,0	THE T	79,0	79,0	i V
Rührwerk Fermenter II	BGA Planung		24 h - 20 Min/h (Rührwerke)	25,0				0,0	200.00	0'62	79,0	
Stickstoffeinheit Wärmespeicher	BGA Planung	am Behälter Wärmespeicher	24 h - 100%	21,5				0.0	1000	80,0	0,08	
Biomethanaufbereitung	Biomethan	200	24 h - 100%	21.7	110			0.0		91,0	91,0	
BGHVA 1-Abluft passiv	Einspeiseanlage	in Fassade Sūd	24 h - 100%	24.2				3,0	NO.	78,0	78,0	

Vorabzug

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Abholung Gärrest

BGHVA 1-Abluft Ventiator Einspeiseanlage BGHVA 1-Dach Einspeiseanlage BGHVA 1-Fas. Ost Einspeiseanlage BGHVA 1-Fas. Ost, Tür Einspeiseanlage BGHVA 1-Fas. West Einspeiseanlage BGHVA 1-Zuluftgitter Einspeiseanlage BGHVA 1-Lultkühler Lamellen Einspeiseanlage BGHVA 1 Luftkühler Lamellen Einspeiseanlage		n Fassade Süd										
		n Fassade Süd		E	m,m²	dB(A)	BB B	Œ	B	dB(A)	dB(A)	dB(A)
			24 h - 100%	24,2				3,0	EN SE	84,3	84,3	
			24 h - 100%	26,5	35,2	105,0	56,0	0,0	67	51.7	67,2	
- T-			24 h - 100%	24,4	79.7	105,0	56,0	3,0	67	51,7	66,4	
		Stahtur geschbssen	24 h - 100%	22,9	3,5	105,0	20,0	3,0	67	85,2	90'6	
THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE		in Fassade Süd	24 h - 100%	24,2	22,6	105,0 56,0	56,0	3,0	67	51,7	65,2	
7K			24 h - 100%	24,2	34,1	105,0	56,0	3,0	67	51,7	0,73	
TK.		in Fassade Ost	24 h - 100%	22,4	9'0	-		3,0		9,16	988	
Œ,	Г	südlich BGHVA 1	24 h - 100%	23,2	1			0'0	(Chap	83,9	83,9	
		südlich BGHVA 1	24 h - 100%	24,7	, in			0'0	L-ret	84,3	84,3	
BGHVA 1, E-Raum-Dach Einspeiseanlage	anlage		24 h - 100%	26,5	11,2	0'02	56,0	0,0	67	16,7	27.2	
BGHVA 1, E-Raum-Fas. Nord Einspeiseanlage	anlage		24 h - 100%	24,3	21,1	0'02	56,0	3,0	er	16,7	29,9	
BGHVA 1, E-Raum-Fas, Nord; Einspeiseanlage Tür		Stahtur geschbssen	24 h - 100%	22,8	2,0	0'02	20,0	3,0	65	50,2	53,2	
BGHVA 1, E-Raum-Fas. Ost Einspeiseanlage	anlage		24 h - 100%	24,2	10,8	0'02	56,0	3,0	m	16,7	27,0	Ų.
BGHVA 1, E-Raum-Fas. West Einspeiseanlage	anlage		24 h - 100%	24,2	10,6	70,0	56,0	3,0	en	16,7	26,9	
BGHVA 2-Abluft passiv Einspeiseanlage		in Fassade Süd	24 h - 100%	24,2	IT			3,0		0'82	78,0	
BGHVA 2-Abluft Ventilator Einspeiseanlage		in Fassade Süd	24 h - 100%	24,2	1			3,0		84,3	84,3	
BGHVA 2-Dach Einspeiseanlage	anlage		24 h - 100%	26,5	35,2	105,0	56,0	0'0	m	51.7	67,2	
BGHVA 2-Fas. Ost Einspeiseanlage	anlage		24 h - 100%	24,2	33,7	105,0	56,0	3,0	ey	51.7	0'29	
BGHVA 2Fas. Sūd Einspeiseanlage	-	in Fassade Süd	24 h - 100%	24,2	22,6	105,0	105,0 56,0	3,0	ey	51.7	65,2	
BGHVA 2-Fas. West Einspeiseanlage	anlage		24 h - 100%	24,4	30,1	105,0	56,0	3,0	ey	51.7	5'99	
BGHVA 2-Fas. West, Tür Einspeiseanlage		Stahfür geschbssen	24 h - 100%	22,9	3,5	105,0	20,0	3,0	ey	85,2	90'6	
BGHVA 2-Zuluftgitter Einspeiseanlage		in Fassade West	24 h - 100%	22,4	9'0			3,0		91,6	9'88	
BGHVA 2 Luffkühler Lamellen Einspeiseanlage		südlich BGHVA 2	24 h - 100%	23,2	-			0'0		83,9	83,9	
100		südlich BGHVA 2	24 h - 100%	24,7	ir ii			0,0		84,3	84,3	
BGHVA 2, E-Raum-Dach Einspeiseanlage	anlage		24 h - 100%	26,5	11,2	70,0	56,0	0'0	ey	16,7	27,2	
	anlage		24 h - 100%	24,3	21,1	70,0	56,0	3,0	m	16,7	29,9	
BGHVA 2, E-Raum-Fas. Nord; Einspeiseanlage Tür		Stahtur geschbssen	24 h - 100%	22,8	2,0	70,0	20,0	3,0	m	50,2	53,2	7

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Abholung Gärrest

Name	Gruppe	Kommentar	lagesgang	7	l oder S	-	Š	5	5	_	à	LWMEX
				E	m,m²	dB(A)	뜅	田田	B	dB(A)	Œ(A)	dB(A)
BGHVA 2, E-Raum-Fas, Ost	Einspeiseanlage	,,,,,	24 h - 100%	24,2	10,8	0'02	98,0	3,0	m	16,7	27.0	
BGHVA 2, E-Raum-Fas. West	Einspeiseanlage		24 h - 100%	24,2	10,6	70,0	98'0	3,0	n	16,7	26,9	
BGMKOA LAbluftgitter	Einspeiseanlage	in Fassade West	24 h - 100%	23,8	17			3,0	71	78,0	78,0	
BGMKOA LZuluftgitter 1	Einspeiseanlage	in Fassade West	24 h - 100%	22,8	17			3,0	7	78,0	78,0	
BGMKOA LZuluftgitter 2	Einspeiseanlage	in Fassade West	24 h - 100%	22,8				3,0	7	78,0	78,0	
BGMKOA ILAbluffgitter	Einspeiseanlage	in Fassade Ost	24 h - 100%	23,8				3,0	71	78,0	78,0	
BGMKOA Il-Zuluftgitter 1	Einspeiseanlage	in Fassade Ost	24 h - 100%	22,8	17			3,0	77	78,0	78,0	
BGMKOA I-Zuluftgitter 2	Einspeiseanlage	in Fassade Ost	24 h - 100%	22,8	17			3,0	71	78,0	78,0	
BGSW-Abluftventilator	Einspeiseanlage	in Fassade Süd	24 h - 100%	23,8	71			3,0	78	82,2	82.2	
BGSW-Dach	Einspeiseanlage		24 h - 100%	24.7	5,3	92,0	30,0	0'0	eq	62,7	6'69	
BGSW-Fas. Nord	Einspeiseanlage		24 h - 100%	23,3	6'5	92,0	30,0	3,0	n	62,7	70,4	
BGSW-Fas. Sūd	Einspeiseanlage		24 h - 100%	23,3	6,2	92,0	30,0	3,0	n	62,7	9'02	
BGSW-Fas West	Einspeiseanlage		24 h - 100%	23,4	5,4	92,0	30,0	3,0	n	62,7	0'02	
BGSW-Fas. West; Tür	Einspeiseanlage	Stahtur geschbssen	24 h - 100%	22,8	2,0	92,0	20,0	3,0	ep	72,2	75,2	
BGSW-Zuluffgitter	Einspeiseanlage	in Fassade Süd	24 h - 100%	22,8	72			3,0	7	77.7	77.7	
Lkw/IFz Fahrspur Gärrest Abfuhr BGA Bestand	Gärrest Abfuhr	12 Kfz tags	6-22 Uhr - 12 Kfz	21,8	297,1			0,0	2000)	63,0	7,78	104,0
Lkw/JFz Fahrspur Gärrest Abfuhr BGA Planung	Gärrest Abfuhr	12 Kfz tags	6-22 Uhr - 12 Kfz	21,7	573,4			0,0	194 - 194 194 - 194	63,0	90'6	104,0
Lkw/Fz Pumpe Gärrest Abfuhr BGA Bestand Pos. 1	Gärrest Abfuhr	6 Kfz a 5 Minuten tags	6-22 Uhr - 30 Minuten	7,12				0,0	2000	109,6	109,6	
Lkw/Fz Pumpe Gärrest Abfuhr BGA Bestand Pos. 2	Gärrest Abfuhr	6 Kfz a 5 Minuten tags	6-22 Uhr - 30 Minuten	21,7	FF 1F			0,0	00-7	109,6	109,6	
Lkw/Fz Pumpe Gärrest Abfuhr BGA Planung	Gärrest Abfuhr	12 Kfz a 5 Minuten tags	6-22 Uhr - 60 Minuten	21,8				0,0	Zeco	109,6	109,6	
Karbffellager 1 - Lüftungskulsse 1	Kartoffelager	in Fassade Süd Karbffellagerhalle	24 h - 100%	25,4	5,8		2 - A	3,0	TEFREA	80,4	0'88	
Kartoffellager 1 - Lüffungskultsse 2	Kartoffellager	in Fassade Süd Kartoffellagerhalle	24 h - 100%	25,4	5,8			3,0	9000	80,4	88,0	

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Abholung Gärrest

	Gruppe	Kommentar	Tagesgang	Z	l oder S	ם	Š	KO	PO	N.	IW.	LWMex
				E	m,m*	dB(A)	명	留	쁑	dB(A)	dB(A)	dB(A)
Kartoffellager 2 - Luftungskulisse Kart 1	Kartoffelager	in Fassade Süd Karbffellagemalle	24 h - 100%	25,4	8,8			3,0		80,4	0'88	
Kartoffellager 2 - Lúftungskulisse Kart 2	Kartoffelager	in Fassade Sūd Karb/fellagerhalie	24 h - 100%	25,4	5,8		I 2	3,0		80,4	88,0	
Kartoffellager 3 - Lüffungskulisse Kart 1	Kartoffellager	in Fassade Süd Karbffellagerhalle	24 h-100%	25,4	5,8			3,0		80,4	88,0	
Kartoffellager 3 - Luftungskulisse Kart 2	Kartoffelager	in Fassade Süd Karbffellagemaile	24 h - 100%	25,4	5,8			3,0	TF F	80,4	88,0	
Kartoffellager 4 - Lüffungskulisse Kart 1	Kartoffellager	in Fassade Süd Karbffellagerhalle	24 h - 100%	25,4	5,8			3,0		80,4	88,0	
Kartoffellager 4 - Luftungskulisse Kart 2	Kartoffelager	in Fassade Süd Karbffellagerhalle	24 h - 100%	25,4	5,8		N 2	3,0		80,4	88,0	
Lkw/Fz Fahrspur Karbffellagerhalle	Kartoffellager	20 Kfz tags	6-22 Uhr - 20 Kfz	21,7	647,9			0,0		63,0	91,1	104,0
Teleskoplader Verladung Karl	Kartoffelager	20 Kfz a 15 Minuten	6-22 Uhr - 300 Minuten	21,9	1,7281			0,0		74,1	107,0	111,0
		The second secon	Minutell	The second	The state of the s					\neg	San sand	

Anhang 3: Berechnung der Geräuschimmissionen - Situation Regelbetrieb mit Abholung Gärrest

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Ourie		
	Ċ	
M.	db(A)	Schallestungsbegel der Schalqueile
S	E	Mittere Enterning Schallquelle - Immissionsort
loderS	m,m²	Größe der Quelle (Länge oder Fläche)
Ko	뜅	Zuschlag für gerichtete Abstrahlung
Adiv	号	Mittere Dampfung aufgrund geometrischer Ausbreitung
Agr	뜅	Mittlere Dämpfung aufgrund Bodeneffekt
Abar	号	Mittere Dampfung aufgrund Abschirmung
Aatm	뜅	Mittere Dämpfung aufgrund Luftabsorption
PD	8	Mittlere Richtwirkungskornektur
dLreff	dB(A)	Pegelerhöhung durch Reflexionen
8	dB(A)	Unbewerteter Schalldruck am Immissionsort Ls=Lv*Ko+ADI+Adiv+Agr+Abar+Astm+dLreft
Crnet,T	8	Meleorologische Korrektur tags
Crnet,N	8	Meteorologische Korrektur nachts
dLw,T	땀	Korrektur Betriebszeiten tags
dLw,N	쁑	Korrektur Betriebszeiten nachts
K	8	Zuschlag für Tageszeiten mit erhöhter Empfindlichkeit (Anteil)
5	dB(A)	Beurteilungspegel Tag
~	dB(A)	Beurteilungspegel Nacht

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Quelle	LW	υ	loder S	2	Adiv	Agr	Abar	Aatm	ADI	dLref	2	Cmet,T	Cmet,N	d.w.T	d_w,N	ZK	5	2
	dB(A)	ш	m,m²	뛰	B	帘	甲	명	B	dB(A)	dB(A)	8	B	田	B	명	dB(A)	dB(A)
IO-Nr. 01 Edith-Stein-Ring 37 RW,T 55 dB(A)		RW.N 40	0 dB(A)	LITE	32 dB(A)		LrN 30 d	dB(A)										
BHKW Containeranlage (Fabrikat 2G)	98'0	8,006		0	1.07-	4.6	38	-29	0'0	0'0	19,8	-3,2	47		0,0	1,9	18,5	18,1
Kartoffellager 4 - Lüftungskulisse 2	88,0	804,0	5,8	6,0	1,89	4,6	-0,2	-30	0,0	1,0	18,2	7	47	0,0	0'0	£.	17,0	16,5
BGHVA 2-Fas. West, Tür	9'06	763,6	3,5	6,0	8,88	4,7	4.1	-12	0,0	0,0		32	100		0,0	6.	16,7	16,3
Biomethanaufbereitung	91,0	881,2		3,0	8,88	47	0,0	-1,7	0'0	0'0	17.71	33	-1,8	0'0	0,0	6	16,4	16,0
Gärrestfrocknungsanlage Regenis GT	93,0	997,5	114,7	3.0	-71,0	47	-0,8	-1,9	0'0	0'0	17,6	-3.3	-1,8	0'0	0,0	1,9	16,2	15,8
Kartoffellager 4 - Lüftungskulisse 1	88,0	7,708	8,3	6,0	198	4,6	-0,2	3,0	0.0	0,3	17,5	5	-1,7	0,0	0'0	1,9	16,3	15,8
Kartoffellager 3 - Lüffungskulisse 2	88,0	811,3	5,8	6,0	-69,2	4,6	-0,2	-3,0	0'0	0'0	17,1	7	1,7		0,0	1,9	15,9	15,4
Kartoffellager 3 - Lüftungskulisse 1	88,0	815,0	8,3	6,0	-89,2	4,6	-0,2	-3,0	0'0	0'0	17,0	-	47	0,0	0,0	1,9	15,9	15,3
Kartoffellager 2 - Lüftungskulisse 1	88,0	822,4	5,8	0'9	-88,3	4,6	0,1	-3,0	0'0	0'0	17,0	57	47		0,0	6,1	15,8	15,3
Kartoffellager 2 - Lüftungskulisse 2	88,0	818,7	5,8	6,0	-89,3	4.6	-0,2	-30	0'0	0,0	17,0	- 5	-1,7		0,0	6,	15,8	15,3
Kartoffellager 1 - Lüftungskulisse 2	88,0	826,2	5,8	6,0	-89,3	4.6	-0,1	-30	0,0	0,0	17,0	·7	1,7	0'0	0,0	6.	15,8	15,3
Kartoffellager 1 - Lüftungskulisse 1	88,0	830,0	8,3	6,0	-89,4	4.6	-0,2	-30	0'0	0'0	16,8	19	1,7		0,0	6	15,7	15,1
BGHVA 2-Abluft Ventilator	84,3	761,6		6,0	9'89-	4,6	-0,5	-1,5	0'0	0'0	15,4	-3,2	-1,7	0'0	0,0	1,9	14,2	13,7
BGHVA 2-Zuluftgitter	88,6	763,6	0,5	6,0	9'89-	47	į.	5	0,0	0,0	14,7	33	4,8		0,0	1,9	13,4	13,0
BGHVA 2 Luftkühler Ventilator	84,3	759,0		3,0	9'89-	4,6	-1,0	100	0.0	2,4	14.0	7	-1,7	0'0	0,0	6,1	12,8	12,3
Gärrestfrocknungsanlage Regenis GT	93,0	890,3	142,0	3,0	-70,0	4,7	-56	-1,7	0.0	0,0	14,0	-33	8. T		0,0	1,9	12,7	12,2
BGHVA 1 Luftkühler Ventilator	84,3	762,2		3,0	-88.6	4,6	-1,5	-1,5	0'0	2,7	13,8	5,4	47	0'0	0,0	6,1	12,6	12,1
BGHVA 1-Abluft Ventilator	84,3	764,6		6,0	-68,7	4,6	-1,8	-1,5	0,0	0,0	13,7	-3,2	1,7	0,0	0,0	1,9	12,5	12,0
Dachlüffer 1 Annahmebehälter	85,0	895,5		3,0	-70,07-	4.6	0,0	10	0,0	0,0	13,3	er er	1,7	0,0	0,0	6.	12,1	11,6
Dachlüffer 1 Lagerbehälter IV	85,0	911,0		3,0	-70,2	99	0,0	6,1	0'0	0'0	13,1	7	-1,7	0'0	0,0	6	11,9	11,4
Dachlüffer 2 Annahmebehälter	85,0	6'668		3,0	-70,1	4,6	-0,5	6,1	0'0	0'0	13,1	Ę.	-1,7	0'0	0,0	1,9	11,9	11,4
Dachlüffer 1 Fermenter I	85,0	912,2		3,0	-70,2	4,6	0,0	0,1	0,0	0.0	13,1	er er	-1,7	0.0	0'0	1,9	11,9	11,4
Dachlüffer 1 Fermenter III	85,0	918,2		3,0	-70,3	4,6	0,0	-0,1	0'0	0'0	13,0	ņ	1,7	0'0	0'0	6,1	11,8	11,3
Dachlüfter 2 Fermenter I	85,0	922,3		3,0	-70,3	4,6	0,0	-0,1	0'0	0,0	13,0	Ę.	1,7	0,0	0,0	1,9	11,8	11,3
Dachüffer 1 Nachgärer	85,0	922,3		3,0	-70,3	4.6	-0,2	-0,1	0'0	0,0	12,8	5	47	0'0	0,0	6,1	11,6	11,1
Dachlüffer 1 Nachgärer II	85,0	940,0		3,0	5'02-	4.6	0,0	-0,1	0'0	0,0	12,8	£.	-1,7	0'0	0'0	1.9	11,6	11.1
Dachlüffer 1 Fermenter II	85,0	937,7		3,0	-70,4	4,6	0'0	1,0	0,0	0,0	12,8	÷	1,7		0,0	6.	11,6	11,1
Dachlüfter 1 Fermenter IV	85,0	962,1		3,0	7,07-	99	0,0	-0,1	0'0	0'0	12,6	5	1,7	0'0	0,0	6,	4,1	10,9
Dachlüffer 1 Lagerbehälter II	85,0	9,986		3,0	-70,9	4,6	0.0	0,1	0'0	0'0	12,4	-3,2	-1,7		0,0	1,9	11,2	10,7
Dachlüffer 1 Lagerbehälter III	85,0	8,066		0	-70,9	4.6	0.0	1.0-	0.0	0.0	12,4	32	-1,7		0.0	1.9	11.1	10.7

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Quelle	N	(7)	loder S	2	Adiv	Agr	Abar	Aatm	ADI	dLrefl	9	Cmet,T	Cmet,N	d.w.T	dLw,N	ZK	5	3
	dB(A)	ш	m,m²	뛰	용	뛰	田	뚕	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	dB(A)	dB(A)	g	쁑	8	용	8	dB(A)	dB(A)
Dachlütter 2 Annahmebehälter	85,0	1017,		3,0	-71,1	4,6	0,0	1,0-	0'0	0'0	12,1	3,2	20-	0'0	0,0	1,9	10,9	10,4
Dachlüffer 1 Lagerbehälter	85,0	964,9		3,0	7.07-	4,6	-0,5	-0,1	0.0	0'0	12,1	7	47	0,0	0,0	1,9	10,9	10,4
Dachlüfter 2 Fermenter	85,0	1002,		3,0	-71,0	4.6	-0.2	1,0	0,0	0,0	12,1	-3,2	1,7	0,0	0,0	6	10,9	10,4
Dachlüffer 1 Annahmebehälter	85,0	1003,		3,0	-71,0	4,6	-0,2	1,0	0.0	0'0	12,1	-32	-4,7	0,0	0'0	1,9	10,9	10,4
Dachlüffer 1 Lagerbehälter I	85,0	1023,		3,0	-71,2	4.6	0,0	-0,1	0'0	0'0	12,1	33	47	0'0	0,0	1,9	10,8	10,4
Dachlüfter 2 Nachgärer I	85,0	1023,		3,0	-71,2	4,6	0,0	-0,1	0,0	0'0	12,0	32	1,7	0'0	0'0	-	10,8	10,3
Dachlüfter 2 Fermenter IV	85,0	978,9			-70,8	4,6	-0,5	0,1		0'0	12,0	er	1,7	0'0	0,0	1,9	10,8	10,3
Feststoffeintrag mit Flüssigfuttereinheit II	95,0	922,7	30,2		-70,3	4.7	0,0	97		0,0	19,4	-33	₩, ₩,	-7,8	-7,8		10,3	86
BGHVA 1 Luftkühler Lamellen	83,9	762,2		3,0	9'89-	4,7	-6.5	-1.5	0.0	5,0	10,7	32	117	0,0	0,0	6	9,4	0'6
Dachlüfter 2 Fermenter III	85,0	942,7			502-	4,6	-23	-0,1		0'0	10,5	-3.1	1,7	0.0	0,0	1,9	9,3	8,8
Dachlüfter 1 Fermenter I	85,0	1002,		3,0	-71,0	9	8,1	1,0	0,0	0,0	10,5	32	-1,7	0'0	0,0	- 9	9,3	8,8
BGHVA 2 Luffkühler Lamellen	83,9	759,0		3,0	9'89-	47	-6,7	-15	0.0	4,9	10,4	-3,2	7,1-	0.0	0,0	1,9	9,1	9.0
BHKW-Fas. Sud; Tür	82,3	976,0	6,3	6,0	-70,8	4.7	0,1	-30	0'0	0,0	2,6	333	4,8	0,0	0,0	6	8,4	8,0
BGMKOA LZulufigitter 1	78,0	760,0		6,0	-68,6	4,7	0,0	-15	0'0	0'0	9,3	-3,2	1,8	0,0	0,0	1,9	8,0	7,5
BGHVA 2-Abluft passiv	78,0	781,1		6,0	-88.6	4,6	-0,2	-1.5	0'0	0'0	9,	-32	17	0'0	0,0	1,9	7,9	7,4
Dachlüffer 2 Lagerbehälter IV	85,0	947,7		3,0	5'02-	4,6	4.2	-0,1	0,0	0,0	9'8	3,1	-1,7	0'0	0,0	1.9	7,4	6,9
BGSW-Abluftventilator	82,2	791,2		6,0	990	4,6	4.6	-1,5	0,0	0,0	8,5	-3,2	1,7	0,0	0,0	+ 3	7,3	6,8
Betriebshalle-Fas. Süd; Tor	80,1	983,9	20,3	6,0	-70,9	4.7	-0,1	-20	0'0	0'0	8,5	-3,2	00,	0,0	0'0	9,	7,2	6,7
Dachlüfter 2 Nachgärer II	85,0	9,176		3,0	7.07-	4,6	4,2	6,1	0'0	0'0	8,4	-	17	0'0	0,0	1,9	7,1	9'9
BGMKOA LAbluffgfter	78,0	759,2		6,0	9'89-	4.6	-12	9	0,0	0,0	00	32	1,7	0,0	0,0	1,9	6,8	6,4
Feststoffentrag mit Flüssigfuttereinheit	95,0	923,6	28,7	3,0	-70,3	4.7	4,4	-27	0,0	0'0	15,9	333	1,8	-7,8	-7,8	6,	6,8	6,4
BGHVA 1-Abluft passiv	78,0	764,1		6,0	-68,7	4,6	-1,6	5	0.0	0'0	9'/	-3,2	1,7	0.0	0,0	1,9	6,4	5,9
Dachlüfter 2 Fermenter II	85,0	946,1		3,0	-70,5	4,6	-5,2	-0,1	0'0	0'0	9'1	3.1	47	0'0	0,0	1,9	6,4	5,9
Dachlüfter 2 Lagerbehälter II	85,0	1020,		3,0	-71,2	9		1,0	0,0	0'0	7,4	-3,2	1,7	0'0	0,0	9,	6,2	5,7
BGMKOA LZuluffofffer 2	78.0	758.7		6.0	-88.6	47	0	5	0.0	0.0	7.4	32	57	0'0	0.0	4.0	6.1	9.5

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

חחבום	š	υ	oder S	2	Adiv	Agr	Abar	Aatm	ADI	dLref	2	Cmet,T	Cmet,N	d.w.T	d.w.N	ZR	E	3
	(A)(B)	Ш	m,m2	땅	땅	8	畏	땅	贸	dB(A)	dB(A)	8	뛰	铝	畏	8	dB(A)	dB(A)
Dachüffer 2 Nachgärer	85,0	949,0		_	-70,5	4.6	-5,6	1,0	0'0	0'0	7,2	33.1	11	0'0	0,0	1.9	6,0	5,5
Dachlüffer 2 Lagerbehälter	85,0	989,2		3,0	6'02-	4.6	-5,7	-0,1	0,0	0'0	6,7	3,2	4,7	0'0	0,0	9	5,5	5,0
Dachlüfter 2 Lagerbehälter III	85,0	1025, 6		3,0	-71,2	4,6	55	-0,1	0,0	0,0	9'9	32	47	0'0	0,0	6,1	5,3	4,8
Dachlüfter 1 Nachgärer I	85,0	1020,		3,0	-71,2	4,6	5.8	-0,1	0'0	0'0	6,5	32	1/7	0'0	0,0	ф. —	5,2	4,7
BGHVA 1-Fas, Ost, Tür	90'6	769,1	3,5	6,0	-68,7	4.7	-17.9	1,4	0.0	0'0	4,0	32	1,8	0'0	0,0	1,9	2,7	2,2
Dachlüfter 2 Lagerbehälter I	85,0	1042,		3,0	71,4	4,6	5,6	-0.1	0,0	0'0	2,4	-3,2	L.	0'0	0'0	6.	1,2	0,7
BGSW-Zuluftgitter	7,77	791,2		6,0	0,08	47	63	-1,5	0'0	0'0	2,3	3,2	1,8	0,0	0,0	1,9	1,0	9'0
Sticksbffeinheit Wärmespeicher	80,0	899,5		_	-70,1	47	-0,1	5.9	0.0	0.0	2,2	-33	7	0.0	0.0	1,9	8,0	0,4
BGSW-Fas. West, Tür	75,2	7,167	2,0	6,0	-89,0	4,7	4.6	-1,3	0.0	0.0	9	32	7,1	0.0	0,0	6,	0,4	1,0
Feststoffeintrag mit Flüssigfuttereinheit	95,0	1017,	28,7	3,0	1,17-	1,4	-10,6	-25	0'0	0'0	9,1	33	80. T	8'1-	8'2-	6.	0'0	-0,5
Betriebshalle-Dach	73,8	9'686	223,4	3,0	-70,9	4,6	-0,3	9,0-	0'0	0'0	0,4	Ę	-1,7	0'0	0,0	1,9	-0,7	-12
BGHVA 1-Zuluffgtter	88,6	769,2	0,5	6,0	-68,7	4.7	-19,7	5	0,0	0'0	0'0	-33	£.	0,0	0,0	1,9	5	57
BGSW-Fas, West	70,0	7,167	5,4	6,0	-69,0	4.7	-1.9	=	0.0	0.0	7'0-	32	47	0'0	0,0	1,9	-1,9	-24
BGSW-Fas. Sūd	9'02	791,2	6,2	6,0	-69,0	4,7	eri eri	Ŧ	0'0	0'0	-1,4	-3,2	1,7	0.0	0,0	1,9	-27	-32
BGSW-Dach	6'69	792,2	5,3	3,0	-89.0	4.6	-0,3	-13	0'0	0'0	-22	3,1	-4.7	0'0	0,0	1,9	-3.4	-3,9
Betriebshale-Fas. Sūd	1.78	984,5	54,8		-70,9	4,6	1.0	9'0-	0,0	0,0	-25	32	47	0'0	0,0	6.1	-3,8	4.3
BGHVA 2-Fas. West	86,5	763,5	30,1	6,0	8,88-	4.6	-1,6	-1,0	0,0	0,0	-33	13.	1,7	0,0	0,0	4.9	4,5	-5,0
Rührwerk Fermenter III	79,0	915,0	-	3,0	-70,2	4,6	0,0	90	0'0	0'0	1,1	-3,2	1,7	4,8	¥,	6	4.9	-54
BGHVA 2Fas. Sud	65,2	761,8	22,6	6,0	-68,6	4,6	9,0-	-1,0	0'0	0'0	9,5-	-32	-1,7	0'0	0,0	1,9	4.9	-5,4
BGHVA 1-Fas. West	67.0	788,5	34,1	6,0	-68,7	4.6	4.4	-1,0	0.0	1,9	-3,7	7	-1,7	0,0	0'0	1,9	-50	-5,4
BGHVA 1-Dach	67,2	8,797	35,2	3,0	-68,7	4,6	-0,2	-	0'0	0.0	4.4	7	1,7	0.0	0,0	6,1	r, S	19
BGHVA 2-Dach	67,2	764,9	35,2	3,0	-68,7	4,6	-03	÷	0'0	0'0	4,4	7	4,7	0,0	0,0	1,9	-56	19
BGHVA 2-Fas. Ost	67,0	766,1	33,7	6,0	-68.7	4.6	-11.9	-0,9	0'0	8,5	4,6	5	47	0'0	0,0	1,9	-58	6,3
BGHVA 1-Fas, Süd	85,2	764,8	22,6	6,0	-68,7	4,6	-1,8	-10	0'0	0,0	4,8	5	117	0'0	0,0	6,	6,0	99
Betriebshale-Fas. Ost	71,2	994,5	124,0	6,0	-70,9	4.6	-8,5	-0,3	0,0	0'0	197	7	7,7	0,0	0,0	6.	-6,4	-6,8
Gemis chkühler BHKW 1	87,0	971,9		3,0	7.07-	47	-17,5	-2,6	0'0	0'0	5,5	33	-1,8	0'0	0,0	6,	69	-7,3
Rührwerk Fermenter IV	79,0	964,0		0	7.07-	4,6	-28	14	0'0	0'0	-1,2	3,2	-1,7	4,8	4,8	1,9	-7,2	1.7-
BGMKOA ILA bluffgitter	78,0	7773,8		6,0	8,88-	4.6	-15,1	5	0,0	0.0	-6,0	3,2	-1,7	0,0	0,0	1,9	-7.3	-7,8

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Quelle	M	(J)	l oder S	2	Adiv	Agr	Abar 4	Aatm	ADI (dLrefl	গ্ৰ	Cmet,T	Cmet,N	I _W,T	N'M'D	ZR	Lπ	2
	dB(A)	ш	m,m²	ВB	gp	留	甲	명	GB C	dB(A)	dB(A)	eg eg	留	8	B	8	dB(A)	dB(A)
Gemischkühler BHKW 2	87,0	969'8		3,0	7,07-	4,7	1000	-2,7	0,0	0,0	19	33	97	0'0	0,0	1.9	-7,5	-7,9
Gasverdichter	98,0	972,3	200	3,0	7.07		40		0'0	2,1	-6,9	33	69 T	0'0	0,0	9	-8,2	-8,6
BHKW Zuluft 1	65,0	975,4	9,0	6,0	-70,8	4,6	10000	w	0'0	0'0	0'2-	3,2	-1,7	0'0	0,0	1,9	-83	8,8
BHKW Zuluff 2	65,0	8,976	1,0	0	-70.8	4.6	-	CHIPCO	0,0	0,0	0'2-	3,2	7,1-	0.0	0'0	1,9	e0 00	60
BGMKOA Il-Zuluftgitter 2	78,0	774,3		6,0	8,8	4,7	-17,3	w	0.0	0'0	-82	32	٠ <u>٠</u>	0,0	0,0	1,9	-9.5	-10,0
BGMKOA Il-Zuluftgitter 1	78,0	773,1		6,0	-68,8	47	-17,3	50	0,0	0'0	-8,2	-3,2	1,8	0,0	0,0	1,9	-9,5	-10,0
BGSW-Fas, Nord	70,4	793,3	5,9	6,0	69.0	4.7	63	-0,9	0'0	e de la	-10,5	-3,2	4,7	0'0	0,0	1,9	-11,7	-12,2
Betriebshale-Fas. Nord	9'69	995,5	84,6		-71,0	4,6	1	-0,3	0,0	1	-10,6	-3.2	17	0,0	0,0	1.9	-11,9	-12,4
BGHVA 1Fas. Ost	4,39	769,1	28,7	0	-68,7	4,6	-13,1	6'0-	0,0	1000	14,9	13.1	11	0,0	0,0	6.	118,1	-16,6
BHKW Abluft 2	70,0	983,1	1,0		-70,8	_	-16,1	0,1	0'0	150	-16,8	-3,2	7,1-	0,0	0,0	6,	-17,8	-18,3
BHKW Abluft 1	70,0	984,5	1.0	6,0	6'0/-	4,6	-16,1	1,0	0'0	3	-16,6	3,2	-1,7	0'0	0,0	1,9	-17,8	-18,3
Stickstoffeinheit Wärmespeicher	80,0	949,2		3,0	-70,5	47	-19,6	-56	0,0	4/18	-17,4	-33	0 0	0,0	0,0	1,9	-18,8	-19,2
Rührwerk Fermenter I	79,0	927,9			-70,3	4.6	-19,4	4,8	0.0	0.0	-17,2	32	1,7	80	4,8	6,1	-23,2	73,7
Rührwerk Fermenter II	79,0	952,2		3,0	9'02-	4,6	in	-5.0	0,0	0'0	-17,7	-3,2	1,7		4.8	1,9	-23,8	-24.2
Rührwerk Fermenter I	79,0	1013, 6		3,0	1,1	4.6	-19,5	553	0,0	0,0	00	3,2	-1,7	4.8	4,8	6 .	-24,5	-25,0
BGHVA 2, E-Raum-Fas, Nord; Tur	53,2	769,8	2,0	6,0	-68,7	47	-16,1	1,3	0,0		31,6	3,2	<u>ب</u> ش	0.0	0'0	1,9	-32,9	-33,3
BGHVA 1, E-Raum-Fas, Nord; Tür	53,2	772,8	2,0	6,0	-68,8	4.7	-16,91-	6	0.0		-32,5	32	1,00	0,0	0,0	1,9	-33,8	-34,3
BGHVA 2, E-Raum-Fas West	26,9	9'292	10,6	6,0	-68,7	4,6	-25	30350	0,0	0'0	43,8	Ę.	-1,7	0,0	0,0	1,9	145,1	45,6
BGHVA 2, E-Raum-Dach	27,2	768,9	11,2	3,0	-88.7	4,6		COLLEGE	0'0	0	44,3	5	4,7	0'0	0,0	1,9	45,5	-46.0
BGHVA 1, E-Raum-Dach	27.2	771,8	11,2	3,0	-68,7	4,6	-0,2	MARK S	0,0	0,0	44,4	7	17	0'0	0,0	1,9	-45,5	0'94
BGHVA 2, E-Raum-Fas. Ost	27,0	770,2	10,8	6,0	-88,7	4,6	19.5	6'0-	0,0	00	48,9	7	11	0,0	0,0	6.	1,05	9'05-
BGHVA 1, E-Raum-Fas, West	26,9	9'0/1	10,6	6,0	-88,7	9,4	L.Y.	60-	0'0	2	49,6	er er	1,1	0,0	0,0	6,	8,03-	-51,3
BGHVA 1, E-Raum-Fas. Nord	29,9	772,8	21,1	6,0		-	-11,6	6'0-	0'0	0	48,9	ń	-1,7	0'0	0,0	1,9	1,15	-51,6
BGHVA 2, E-Raum-Fas. Nord	29,9	769,9	21,1	6,0	-68,7	4,6	-12,8	60-	0,0		51,1	Ę	-1,7	0,0	0,0	1,9	-23	87
BGHVA 1, E-Raum-Fas, Ost	27,0	773,2	10,8	6,0	8,88-	4,6	-13,3	THE SHI	0.0		54.1	7	-1,7	0'0	0,0	6,1	58,3	-55,8
Teleskoplader Verladung Kartoffelager	107,0	835,3	1927,7	3,0	-89,4	47	-5.7	-32	0,0	mes	28,5	33	60 17	Ψį		1,9	22,1	
Radlader Beschickung Anlage	107,0	964,7	4882,2	3,0	-70,7	47		-3,7	0'0	-	30,8	233	60 T	-9,0		6,1	20,4	
Radlader Beschickung Anlage	107,0	924,9	4758,7	3,0	-70,3	4,7		3,7	0,0	0'0	29,9	33	1,8	-9,0		6,1	19,6	
Lkw/frz Pumpe Gärrest Abfuhr BGA Bestand Pos. 2	109,6	1002		3,0	-71,0	4,7	0,0	-7,1	0'0	0'0	29,8	333	<u>5</u>	13,1		8,1	13,2	
																		-1

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Ouelle	IW	(7)	loder S	\$	Adiv	Agr	Abar /	Aatm	ADI	dLrefl	গ্ৰ	Cmet,T	Cmet,N	d.w.T	d.w.N	ZR	넘	25
	B(A)	m	m,m²	贸	帘	铝	畏	畏	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	dB(A)	dB(A)	땅	Ŧ	畏	畏	쁑	dB(A)	dB(A)
Lkw/Fz Fahrspur Kartoffellagerhalle	91,1	889,9	647,9	3,0	-70,0	4.7	-6,1	-27	0,0	1,8	12,6	13.3	118	1,0		9'0	10,9	
Lkw/Fz Pumpe Anl. Gülle	109,6	1009,		9,0	1,1	47	-28	-55	0,0	0,0	28,5	33	~	-16,8		0'0	6,4	
Lkw/Fz Pumpe Gärrest Abfuhr BGA Planung	109,6			3,0	8,07-	4.7	¥.	-3,7	0,0	0,0	22,0	67	80	-120		0,1	9,7	
Lkw/Fz Fahrspur Gärrest Abfuhr BGA Planung	9'06	920,5	573,4	3,0	-70,3	47	-67	-27	0.0	0,3	9,6	33	8. 7.	-1,2		1,0	6,0	
Lkw/Fz Fahrspur Gärrest Abfuhr BGA Bestand	87,7	1005,	297,1	3,0	-71,0	4,7	-28	55	0'0	0,4	9,2	33	43	-12		1,0	9'9	
Lkw/Fz Fahrspur Ani, Mist	89,1	987,7	404,2	3,0	602-	4,7	-21	13 0 10 0	0,0	0,5	4.0	6,0	60 0 7 7	ių i		2,0	£, 0	
Lkw/IFz Abkippen Mist	87,4	1019,	257,4	-	1 01	14	Penn nin	-3,5	0,0	0,0	1,0	7 67	9 60	7 47		2,0	4,7	
Lkw/IFz Stellgeräusch Waage Anl. Mist	87,8		63,6	3,0	7.69	4,7	-32	-27	0,0	0,0	10,5	233	17	4		2,0	4.2	
Lkw/IFz Fahrspur Ant Gülle	89,6	992,7	454,6	_	o	47		33	0.0	0,3	10,4	-33	1,8	-6,0		2,4	3,5	
Lkw/IFz Pumpe Anl. Gülle	109,6			3,0	0	4.7		4.55	0'0	0'0	28,8	33	5,1	-22,8		0'0	2,7	
Lkw/lFz Stellgeräusch Waage Anl, Mist	87.8		67,2	-211	/11	4,7		7.7	0,0	0,0	3,3	33	8,1-	15		2,0	-3,0	
Lkw/lFz Stellgeräusch Waage Anl. Gülle	87,8		67,2		-7.07-	4,7	-9.0	-	0,0	Mon.	62	33	1,8	9'0		2,4	-3,6	
Lkw/IFz Fahrspur Anl Gülle	91,8	910,0	749,4	3,0	-70,2	4,7	-	-27	0,0	0,4	4,11	65	-1,8	-120		0'0	3,9	
Lkw/Fz Pumpe Gärrest Abfuhr BGA Bestand Pos. 1	109,6	1040,		3,0	-71,3	4.7	19,1	15	0.0	0,0	12,4	67	7,00	151		4,8	4,2	
Lkw/Fz Stellgeräusch Waage Anl. Gülle	87,8	861,3	63,6	3,0	1.69	4,7	-32	-27	0,0	0,0	10,5	-3,3	60 <u>.</u>	-120		0,0	4,8	
Lkw/IFz Abkippen Mist	87,4	887,7	183,6	-	-70,07-	4.7	_	-7	0.0	0.0	-7.4	-3.3	60,	-51		2,0	-13,7	7
		-		-		1												

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Quelle	3	(7)	oder S	2	Adiv	Agr	Abar	Aatm	AD	dLref	9	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	5	3
	dB(A)	ш	m,m²	뛰	명	留	甲	명	B	dB(A)	dB(A)	8	田	田	명	명	dB(A)	dB(A)
iO-Nr. 02 Pater-Augustin-Straße RW,T 55 dB(A	55 dB(A)	RW'N	40 dB	A) Lr	LrT 32 dE	dB(A)	LAN 3	30 dB(A	()									
BHKW Containeranlage (Fabrikat 2G)	98'0	926,1		0	_	4.7	-0,7	-3,9	0'0	0'0	21,4	-32	47	0,0	0,0	1,9	20,1	
BGHVA 2-Fas. West, Tür	906	761,3	3,5	6,0	60	4.7	13	-1.5	0,0	0,0	20,5	-32	3,1	0,0	0,0	6,	19,2	18,7
BGHVA 2-Zulufigitter	88,6	761,3	0,5	6,0		4,7	17	5	0,0	0,0	17.7	33	87	0,0	0,0	6	16,4	16,0
Biomethanaufbereitung	91,0	939,9	3	3,0	-70,5	4.7	0'0	60/	0'0	0'0	17,0	33	87-	0'0	0'0	6	15,7	15,3
Kartoffellager 4 - Lüftungskulisse 2	88,0	822,5	5,8	6,0	-69,3	4,6	-0,1	30	0'0	0'0	16,9	e.	-1,7	0'0	0,0	1,9	15,8	15,2
Kartoffellager 4 - Lüffungskulisse 1	88,0	827,4	5,8	6,0	-89,3	4,6	-0,1	-30	0.0	0,0	16,9	67	-1,7	0,0	0.0	1,9	15,7	15,2
Karloffellager 3 - Lüffungskulisse 2	88,0	832,3	5,8	6,0	-69,4	4.6	10	-3,0	0.0	0'0	16,8	7	1,7	0,0	0.0	1,9	15,6	15,1
Kartoffellager 3 - Lüftungskulisse 1	88,0	837,3	8,3	6,0	-89,4	4,6	-0,1	-30	0'0	0,0	16,7	67	-1,7	0,0	0,0	1,9	15,6	15,1
Kartoffellager 2 - Lüftungskulisse 2	88,0	842,2		6,0	-89,5	4,6	-0,1	5	0'0	0'0	16,7	13.3	17	0'0	0,0	6,1	15,5	15,0
Kartoffellager 2 - Lüftungskulisse 1	88,0	847,2	5,8	6,0	9'69-	4,6	-0,1	13.4	0'0	0,0	16,6	5,5	1,7	0'0	0,0	6,	15,4	14,9
Kartoffellager 1 - Lüftungskulisse 2	88,0	852,1	5,8	6,0	8,68	4.8	-0,1	07	0,0	0,0	16,6	7	1,7	0,0	0,0	6.	15,4	14,9
Kartoffellager 1 - Lüftungskulisse 1	88,0	857,1	8,3	6,0	199.7	4,6	-0,1	13	0'0	0'0	16,5	7	1,7	0'0	0,0	6	15,3	14,8
Gärresttrocknungsanlage Regenis GT	93,0	1040,	114,7	3,0	-71,3	4,7	-1,6	-20	0'0	0,0	16,4	33	7	0,0	0,0	6. 0.	15,0	14,6
Gärrestfrocknungsanlage Regenis GT	93,0	915,3	142,0	3,0		4,7	-36	e	0,0	0,0	15,7	33	8,1	0.0	0,0	6.	14,4	14,0
BGHVA 1-Zuluftgitter	988	769,4	9'0	6.0	-68,7	4,7	-19,5	17	0,0	15,4	15,6	33	60 T	0,0	0,0	6	14,3	13,9
BGHVA 2-Abluft Ventilator	84,3	760,7	2	6,0	9,88-	4,7	0,0	1,00	0'0	0,0	15,6	3,2	1,7	0'0	0,0	en e	14,3	13,8
BGSW-Abluffventilator	82,2	791,2		6,0	0,89	47	-0,2	5,7	0'0	2,3	15,1	32	-1,7	0'0	0,0	1,9	13,9	13,4
BGHVA 1-Fas. Ost, Tür	90'6	769,4	5		-88,7	47	-17,0	4,1-	0.0	10,1	14,9	-3,2	7	0,0	0'0	1,9	13,6	13,2
BGHVA 1 Luftkühler Ventilator	84,3	763,5		3,0	-68,6	4.6	28	4	0'0	4,0	13,7	5	1,7	0.0	0,0	6,1	12,5	12,0
BGHVA 1-Abluft Ventiator	84,3	765,0		6,0	-68,7	4,7	-1,8	-1,5	0'0	0'0	13,7	-32	-1,7	0,0	0,0	1,3	12,5	12,0
Dachlüffer 1 Annahmebehälter	85,0	915,5		3,0	-70,2	4,6	0'0	-0,1	0'0	0,0	13,0	ल	17	0,0	0,0	6,1	11,8	11,3
Dachlütter 2 Annahmebehätter	85,0	923,4		3,0	-70,3	4,6	0,0	-0,1	0'0	0'0	12,9	<u>~</u>	14	0,0	0,0	1,9	11,7	11,2
Dachlüfter 1 Fermenter I	85,0	927,0		3,0	-70,3	4.8	0'0	7	0,0	0,0	12,9	7	1,7	0,0	0,0	6.	11,7	11,2
Dachüffer 1 Nachgärer	85,0	945,1		3,0	-70,5	4.6	0,0	-0,1	0'0	0'0	12,7	5	1,1	0,0	0,0	6	11,5	11,0
Dachlüfter 1 Fermenter II	85,0	947,2		3,0	-70,5	4,6	0,0	6,1	0'0	0,0	12,7	13	-17	0'0	0,0	1,9	1,5	11,0
BGHVA 1 Luffkühler Lamellen	83,9	783,5		3,0	-	47	45	9	0,0	5,1	12,7	-3,2	1,7	0,0	0,0	1,9	11.4	10,9
Dachlüfter 1 Fermenter III	85,0	983,4		0	-70,8	4,6	0,0	-0,1	0,0	0'0	12,4	32	4,7	0'0	0,0	6,1	1,2	10,7
Dachlüffer 1 Lagerbehälter IV	85.0	994.9		3.0	-70.9	4.6	0 0	10-	0 0	0.0	12.3	-32	117	0.0	0	1.0	111	10.8

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Ouelle	LW	co	loder S	2	Adiv	Agr	Abar	Aatm	ADI	dLref	9	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	5	3
	dB(A)	III.	m,m ²	땀	gp	留	田田	뜅	용	dB(A)	dB(A)	g B	æ	8	g B	8	dB(A)	dB(A)
Dachlüfter 1 Nachgärer II	85,0	1013,		3,0	-71.1	4,6	0,0	-0,1	0'0	0'0	12,1	-3,2	17-	0'0	0,0	1,9	10,9	10,4
Dachlüfter 1 Fermenter IV	85,0	1026,		3,0	-71.2	4,6	0,0	-0,	0'0	0'0	12,0	-3,2	17	0'0	0,0	6P.	10,8	10,3
Dachlüffer 1 Annahmebehälter	85,0	1031,		3,0	-71,3	4,6	-0,1	-0,1	0,0	0,0	1,8	32	2/1-	0,0	0,0	ς. Oj	10,6	10,1
Dachlüfter 2 Fermenter I	85,0	1032,		3,0	-71,3	F. 6	-0,1	-0,1	0'0	0'0	11,8	32	-1,7	0'0	0,0	9	10,6	10,1
Dachlüffer 1 Lagerbehälter	85,0	8,778		3,0	-70,8	4,6	90	-0,1	0'0	0,0	÷.	ē	47	0'0	0,0	6	10,6	10,1
Dachlüffer 1 Fermenter I	85,0	1039,		3,0	-71,3	4,6	10-	-0,1	0'0	0'0	11,8	-3,2	4	0.0	0'0	6 .	10,5	10,1
Dachlüffer 1 Lagerbehälter II	85,0	1043,		3,0	71,4	4,6	-0,1	-0,1	0,0	0,0	11,8	32	1,7	0,0	0,0	4	10,5	10,0
Dachlüfter 1 Lagerbehälter III	85,0	1059,		3,0	-71,5	9,4	0,0	-0,1	0'0	0'0	11,7	32	1,7	0'0	0,0	9,	10,5	10,0
Dachlüffer 2 Annahmebehälter	85,0	1045,		3,0	-71,4	9,4	-0,1	-0,1	0'0	0'0	11,7	-3,2	-47	0'0	0,0	6,1	10,5	10,0
Dachlüffer 1 Lagerbehälter I	85,0	1051,		3,0	4,17-	4.6	-0,1	-0,1	0,0	0,0	11,7	-3,2	-4,7	0,0	0'0	9	10,4	10,0
BGHVA 2 Luftkühler Ventilator	84,3	758,8		3,0	-88,6	4,6	-1,3	-1,5	0'0	0'0	11,3	57	1,7	0'0	0,0	6,1	10,1	9'6
Dachlüfter 2 Fermenter IV	85,0	1046, 2		3,0	71,4	9	-1,0	4	0'0	0'0	10,9	3,2	-1,7	0,0	0,0	9	9,6	9,2
Feststoffeintrag mit Flüssigfuttereinheit II	95,0	985,1	30,2		-70,9	4,7	0,0	38	0'0	0'0	18,7	65	-1,8	-7,8	-7,8	, 0,	9'8	0,
BGSW-Zuluftgitter	7,77	791,2			-89,0	47	5	4	0'0	2,8	10,0	3,2	80 17	0,0	0,0	1,9	8,7	8,3
BGHVA 2 Luffkühler Lamellen	83,9	758,9		3,0	989	47	-24	7.55	0'0	0'0	8,6	-32	17	0'0	0,0	1 .9	8,5	8,0
BGMKOA LAbluftgitter	78,0	754,5			-88,5	4.7	0,0	1,5	0'0	0'0	6,3	-3,2	1,7	0'0	0,0	6,	8,1	9'1
BGMKOA LZulufigitter 2	78,0	754,1		6,0	-88,5	4,7	0'0	5,15	0'0	0,0	9,3	-3,2	00. T	0,0	0,0	6.	8,0	7,8
BGHVA 2-Abluft passiv	78,0	759,9		6,0	9,89-	4.7	0,0	1,5	0'0	0'0	9,3	-3,2	1,7	0,0	0,0	en en	8,0	7,6
BGMKOA LZuluftgitter 1	78,0	755,1		6,0	-68,6	47	0.0	-1,5	0'0	0'0	9,3	32	æ,†-	0'0	0,0	1,9	8,0	7,6
Feststoffeintrag mit Flüssigfuttereinheit	95,0	936,4	28,7		-70,4	4,7	-29	-30	0'0	0,0	17,1	333	0 0,	-7,8	-7,8	1,9	7,9	7,5
Dachlüffer 2 Fermenter III	85,0	1012,		3,0	-71,1	4,6	30	-0,1	0,0	0'0	6	-3,2	47	0'0	0,0	6,1	7,9	7,4

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

A CONTRACTOR OF THE CONTRACTOR	M	co	loder S	2	Adiv	Agr	Abar	Astm	ADI	dLrefl	গ্ৰ	Cmet,T	Cmet,T Cmet,N	d.w.T	d.w.N	ZR	E	3
	dB(A)	m	m,m²	명	gp	명	甲	명	GB	dB(A)	dB(A)	89	dB	명	qB	뛰	dB(A)	dB(A)
Dachlüfter 1 Nachgärer I	85,0	1055,		3,0	-71,5	4,6	-28	1.0-	0'0	0'0	0'6	-3,2	44-	0'0	0'0	1,9	11	7,3
BGHVA 1-Abluft passiv	78,0	764,3		6,0	-68.7	4,7	1,1	5,	0.0	0'0	8,1	-32	-1,7	0.0	0,0	1,9	8,8	6,4
Dachlüffer 2 Lagerbehälter IV	85,0	1036, 2		3,0	-71,3	4.0	4	1,0	0,0	0,0	7,2	-3,2	1,7	0,0	0'0	6	5,9	5,5
Dachlüfter 2 Nachgärer II	85,0	1049,		3,0	4.17-	4,6	4,7	1,0-	0.0	0'0	12	-3,2	-4,7	0'0	0'0	4,9	5,9	5,4
Dachlüfter 2 Lagerbehälter II	85,0	1082,		3,0	7,17-	4,6	4.5	-0,1	0'0	0'0	0'2	3,2	-17	0'0	0,0	1,9	60	r2.
Dachüffer 2 Nachgärer	85,0	979,5		3,0	8,62	4,8	99-	5,0	0,0	0'0	6,0	£ 6	1,7	0,0	0,0	6, 0	5,6	5, 4
Dachlüfter 2 Lagerbehälter III	85,0	1099,			00 0	9 9	, co	. 6	0,0	0,0		32	7	0'0	0,0	9		9.
Dachlüfter 2 Fermenter II	85,0	961,1	ć				- 200	1,0-	0.0	0'0	5,1	7	1,7	0,0	0,0	φ, c	3,9	3,4
Dachlüffer 2 Nachgärer I	85,0	1064	7'0	၁ တ	0'88'L	¥ ¥	-1,3	-0,1	0,0	0,0	o, 4,	3,2	-1,7	0,0	0,0	<u>т</u>	9,3	2,8
Dachlüfter 2 Lagerbehälter I	85,0	1076,		3,0	9,17-	4,6	-86	1,0-	0.0	0.0	3,0	-32	-1,7	0,0	0'0	4,9	8	13
Dachlüfter 2 Lagerbehälter	85,0	1010,		3,0	-71,1	4,6	9,6-	-0°	0'0	0'0	2,6	32	1,7	0'0	0.0	1,9	4.	6'0
BGSW-Fas. Sūd	70,6	791,3	6,2	0'9	0.69	47	9'0-	-12	0,0	1,0	2,1	-32	-1,7	0,0	0,0	1,9	8'0	0,3
Gemis chkühler BHKW 1	87,0	1009, 3		3,0	-71,1	4.7	E-	-20	0,0	9,0	0,	-33	8,7	0,0	0'0	6	-0,4	8,0-
BGSW-Fas, West	70,0	791,3	5,4	6,0	0.8	47	-0,5	-12	0,0	0,0	9'0	-3,2	-1,7	0,0	0'0	1,9	90-	4,1
Betriebshalle-Fas, Süd; Tor	80,1	1025,	20,3	6,0	-71,2	4,7	80	6,0-	0'0	0'0	-0,5	33	60 <u>.</u>	0'0	0,0	6,1	-1,8	-23
BGSW-Dach	6,69	792,1	5,3	3,0	-89,0	4,7	0,0	4.1	0'0	6'0	-12	7	1,7	0'0	0'0	6,1	-24	-29
Betriebshalle-Dach	73,8	1029,	223,4	3,0	-71,2	4,6	-20	-0,3	0.0	0,0	-1,4	е	2,1-	0'0	0'0	6,1	-2,5	30
Rührwerk Fermenter III	79,0	983,3		3,0	-70,8	4,7	0,0	-6,3	0,0	2,5	2,7	-3,2	1,7	4.8	4 80 E	1.9	33	33
BGHVA 2-Fas. West	86,5	761,2	30,1	6,0	9,88-	4,7	-0,4	7	0,0	0'0	-23	-3,2	1,7	0,0	0,0	6.	3,5	4,0
BGHVA 2-Fas. Súd	65,2	760,8	22,8	6,0	_	4,7	_	7	0'0	0'0	4	3,2	1,7	0'0	0'0	9,	4,3	4,8

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

		No.	1		- OFFICE		i	-	5		1	- 10	1		10/10/10			
	dB(A)	ш	m,m²	贸	eg eg	명	甲	田田	GB C	dB(A)	dB(A)	B	8	8	B	8	dB(A)	dB(A)
BGHVA 2-Fas. Ost	67,0	765,0	33,7	-	-68,7	4.7	-7,2	6,0-	0,0	4,9	-3,6	13.1	1,7	0'0	0,0	1.9	4,9	-5,3
BGHVA 1-Fas. West	67,0	765,6	34,1	-	-68,7	4.7	43	9,1-	0'0	1,9	-38	5	1,7	0'0	0.0	6	9	5,5
BGHVA 1Fas. Sud	65,2	765,2	22,6	6,0	-68,7	4.7	6,0-	-1,0	0'0	0'0	4,0	32	-1,7	0'0	0,0	1,9	-5,2	157
BGHVA 2-Dach	67,2	763,1	35,2	-	88,6	4,6	-	F	0.0	0,0	43	4	-1,7	0,0	0'0	6	-5,4	-6,0
BGHVA 1-Dach	67,2	767,5	35,2	-	-68,7	4,6	10	17	0.0	0.0	4,3	7	1,1	0.0	0,0	6,	-5,4	909
Feststoffeintrag mit Flüssigfuttereinheit I	95,0	1058,	28,7	3,0	-71,5	1,4	-	-27	0'0	0'0	3,1	6,3	87	-7,8	8'2-	6.	6,0	9
Betriebshale-Fas. Süd	2'19	1026,	54,8	6,0	-71,2	4,7	21	9'0-	0'0	0,0	4,	32	1,8	0,0	0,0	6,	6	9'9
BHKW-Fas. Sūd; Tür	82,3	1015,	6,3	6,0	1,17	4.7	-16,3	9,1-	0'0	0'0	-54	67	₩. ₩.	0'0	0'0	9,	-6,7	-7,1
Stickstoffeinheit Wärmespeicher	80,0	933,3		3,0	-70,4	4,7	86	-3,9	0,0	0,0	5,5	333	7,8	0'0	0,0	6,4	1,7-	9'1-
Rührwerk Fermenter IV	79,0	1032,		3,0	-71,3	47	-30	53	0,0	0,0	-22	-3,2	4,7	4,8	¥,	6,	-83	-8,7
BGMKOA II-Abluffgitter	78,0	776,5		6,0	-68,8	47	-16,1	-1,5	0'0	0'0	-7,0	3,2	-1,7	0'0	0,0	1,9	-83	8
Gemis chkühler BHKW 2	87,0	1007,		3,0	1,17-	47	-18,7	4	0.0	0'0	9'2-	-33	, 18	0,0	0,0	1,9	-8.9	-9,4
BGSW-Fas. Nord	70,4	792,9	8,3	6,0	-89'0	4.7	-10,2	6.0-	0,0	0,3	-8.1	-3,2	1,7	0,0	0,0	6	-9.4	66
Gasverdichter	86,0	1010,		3,0	-71,1	47	-19,5	45	0.0	2,4	φ 67	-33	<u>~</u>	0,0	0,0	1,9	7,6-	-10,1
Betriebshale-Fas. Ost	71,2	1035,	124,0	6,0	-71,3	4.7	-9.7	-03	0,0	0,0	-8,7	32	1,7	0,0	0,0	9	66	-10,4
BGMKOA ILZuluffgitter 2	78,0	776,9		6,0	8,88	4.7	-17,8	5	0,0	0,0	00 00	-32	£.	0,0	0'0	1,9	-10,1	-10.5
BGMKOA Il-Zuluffgitter 1	78,0	776,0		6,0	8,8	4.7	-17,9	5	0,0	0'0	80	32	-1,8	0'0	0'0	6,	10,1	-10,6
BGHVA 1-Fas. Ost	66,4	769,4	29,7	0	-68,7	4.7		6'0-	0.0	1,5	-10,5	Ę.	1,7	0,0	0'0	1,9	-11,7	-12,2
Betriebshale-Fas. Nord	9,69	1034,	84,6	0,9	-71,3	4.7	-12,8	-0,3	0,0	0,0	135	-3,2	1,7	0'0	0,0	6.	14,7	-15,2
BHKW Abluft 2	70,0	1020,	1,0	0,0	-71.2	4,7	-15,3	6'0-	0'0	0,0	-16,0	-3,2	-4,7	0.0	0,0	1,9	-17,3	17.7
BHKW Abluft 1	70,0	1021,	1,0	6,0	-71,2	4.7	-15,8	-1,0	0'0	0'0	-16,6	3,2	-4.7	0'0	0,0	1,9	-17,9	-18,4
BHKW Zuluft 2	65,0	1016,	1,0	6,0	1,17	7,4	-12,4	-0,7	0.0	0,0	-17,9	-32	17	0'0	0'0	6.	-19,2	9,61-

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

dB dB<	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 7 777 7 77789777	THE COURSE OF THE PARTY OF THE	THE PERSONNEL CONTRACTOR AND CONTRAC	N. CHA.	-	dB(A)	dB -3,2	# 1	명 S	g 00	# °	3	dB(A)
65,0 1014, 0,5 6,0 -71,1 4,7 -12,8 -0,7 0,0 0 80,0 988,7 3,0 -70,9 4,7 -20,1 -6,1 0,0 0 79,0 962,9 3,0 -70,5 4,7 -18,0 -4,6 0,0 0 79,0 943,1 3,0 -70,5 -4,7 -18,0 -4,5 0,0 0 79,0 77,12 2,0 6,0 -88,7 -4,7 -19,1 -4,7 0,0 0 25,2 771,2 2,0 6,0 -88,7 -4,7 -12,5 -1,4 0,0 0 27,2 768,1 11,2 3,0 -88,7 -4,7 -1,1 1,0 0,0 0 27,2 768,1 10,8 6,0 -88,7 -4,7 -1,1 0,0 0 27,0 768,1 10,8 6,0 -88,7 -4,7 -6,0 -1,0 0,0 1 28,9 766,9 21,1 6,0 -88,7 -4,7 -6,0 -1,0 0,0 1 29,9 766,9 21,1 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1 27,0 772,4 10,8 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1 27,0 772,4 10,8 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1		7 777 7 77789777	The second secon	The second control of the control of	GREE STAT	See S	18,3	32	4	0'0	0 0	1.0	20.00	LABOUR T
80,0 988,7 3,0 -70,9 4,7 -20,1 -£,1 0,0 79,0 962,9 3,0 -70,7 4,7 -18,0 -4,6 0,0 0 79,0 943,1 3,0 -70,7 4,7 -18,0 -4,5 0,0 0 79,0 943,1 3,0 -70,5 -4,7 -19,0 -4,5 0,0 0 79,0 1044, 3,0 -70,5 -4,7 -19,1 -4,7 0,0 0 53,2 771,2 2,0 6,0 -88,7 -4,7 -12,2 -1,4 0,0 0 26,9 764,2 10,6 6,0 -88,7 -4,7 -12,5 -1,4 0,0 0 27,2 776,5 11,2 3,0 -88,7 -4,6 -0,2 -1,1 0,0 0 27,0 768,1 10,8 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1 26,9 771,2 21,1 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1 27,0 772,4 10,8 6,0 -88,7 -4,7 -8,1 -0,9 0,0 1 27,0 772,4 10,8 6,0 -88,7 -4,7 -8,1 -0,9 0,0 1 27,0 772,4 10,8 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1		777 7 77777777		PRINCESON PROCESSOR AND ADMINISTRATION OF STREET	Name of Street						E	o.	-18,6	-20,1
79.0 962.9 3.0 -70.7 4.7 -18.0 4.6 0.0 0 79.0 943.1 3.0 -70.5 4.7 -19.0 4.5 0.0 0 79.0 77.2 2.0 6.0 -68.7 4.7 -12.2 -1.4 0.0 0 25.2 771.2 2.0 6.0 -68.7 4.7 -12.5 -1.4 0.0 0 27.2 766.1 11.2 3.0 -68.7 4.7 -11.1 -1.0 0.0 0 27.2 770.5 11.2 3.0 -68.7 4.6 -0.2 -1.1 0.0 0 27.2 766.1 10.8 6.0 -68.7 4.7 -1.0 0.0 0 27.2 766.9 10.8 6.0 -68.7 4.7 -6.0 -1.1 0.0 0 27.0 768.1 10.8 6.0 -68.7 4.7 -6.0 -1.0 0.0 1 29.9 766.9 21.1 6.0 -68.7 4.7 -6.0 -1.0 0.0 1 29.9 771.2 21.1 6.0 -68.7 4.7 -6.0 -1.0 0.0 1 27.0 772.4 10.8 6.0 -68.7 4.7 -6.0 -1.0 0.0 1 27.0 772.4 10.8 6.0 -68.7 4.7 -6.0 -1.0 0.0 1		77 7 7777777		MATERIAL CONTRACTOR CO		10.5	-18,8	-33	8,	0'0	0,0	1,9	-20,1	-20,6
79,0 943,1 3,0 -70,5 4,7 -19,0 4,5 0,0 0 1044, 3,0 -71,4 4,7 -19,1 4,7 0,0 0 7,7 10,4 10,1 10,4 10,0 0 1,2 1,2 1,4 10,0 0 1,2 1,2 1,4 10,0 0 1,2 1,2 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	0.60	7 7 77789777		ATTAIN OF SAMPLES AND THE SAME	OUD-	100	-159	32	17	4,8	48	1,9	-21,9	-22.4
79,0 1044, 3,0 -71,4 4,7 -19,1 4,7 0,0 0 53,2 786,8 2,0 6,0 -68,7 4,7 -12,2 -1,4 0,0 0 53,2 771,2 2,0 6,0 -68,7 4,7 -12,5 -1,4 0,0 0 27,2 766,1 11,2 3,0 -68,7 4,7 -1,1 -1,0 0,0 0 27,2 770,5 11,2 3,0 -68,7 4,6 -0,2 -1,1 0,0 0 27,0 768,1 10,8 6,0 -68,7 4,7 -8,2 -0,9 0,0 4 28,9 766,9 21,1 6,0 -68,7 4,7 -6,0 -1,0 0,0 1 29,9 771,2 21,1 6,0 -68,7 4,7 -8,1 -0,9 0,0 1 27,0 772,4 10,8 6,0 -68,7 4,7 -8,2 -0,9 0,0 1	0.0000000000000000000000000000000000000	7 77789777		NAME OF TAXABLE PARTY OF THE PARTY OF T	ence a	7	-16,5	32	1,7	4.8	4.8	€.	-22,6	-23.0
53.2 786.8 2.0 6.0 -68.7 -4.7 -12.2 -1.4 0.0 0 53.2 771.2 2.0 6.0 -68.7 -4.7 -12.5 -1.4 0.0 0 26.9 764.2 10.6 6.0 -68.7 -4.7 -1.1 -1.0 0.0 0 27.2 766.1 11.2 3.0 -68.7 -4.6 -0.2 -1.1 0.0 0 27.2 770.5 11.2 3.0 -68.7 -4.6 -0.2 -1.1 0.0 0 27.0 768.1 10.8 6.0 -68.7 -4.7 -8.2 -0.9 0.0 4 28.9 766.9 21.1 6.0 -68.7 -4.7 -6.0 -1.0 0.0 1 29.9 771.2 21.1 6.0 -68.7 -4.7 -8.1 -0.9 0.0 0 27.0 772.4 10.8 6.0 -68.7 -4.7 -8.2 -0.9 0.0 1		77799777		ANNUAL PROPERTY AND PARTY.	CC-R-C	033	-17,8	-3,2	1,7	8	8,4	1,9	-23,9	-24,3
53,2 771,2 2,0 6,0 -68,7 -4,7 -12,5 -1,4 0,0 0 26,9 764,2 10,6 6,0 -68,7 -4,7 -1,1 -1,0 0,0 0 27,2 766,1 11,2 3,0 -68,7 -4,6 -0,2 -1,1 0,0 0 27,2 770,5 11,2 3,0 -68,7 -4,6 -0,2 -1,1 0,0 0 27,0 768,1 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0 4 28,9 766,9 21,1 6,0 -68,7 -4,7 -6,0 -1,0 0,0 1 29,9 771,2 21,1 6,0 -68,7 -4,7 -8,1 -0,9 0,0 0 27,0 772,4 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0 1		777777		ARTHUR BUT OF THE	200	208	-27,8	-3,2	1,8	0.0	0,0	1,9	-28,1	-29.5
26,9 764,2 10,6 6,0 -88,7 -4,7 -1,1 -1,0 0,0 0 27,2 770,5 11,2 3,0 -88,7 -4,6 -0,2 -1,1 0,0 0 27,2 770,5 11,2 3,0 -88,7 -4,6 -0,2 -1,1 0,0 0 27,0 768,1 10,8 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1 29,9 766,9 21,1 6,0 -88,7 -4,7 -6,0 -1,0 0,0 1 29,9 771,2 21,1 6,0 -88,7 -4,7 -8,1 -0,9 0,0 1 27,0 772,4 10,8 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1	0 0 0 0 0 0	44444	THE RESERVE	Mark Thoronton	LGLE:		-28,1	-3,2	۶. 1	0,0	0,0	6,1	-29,4	-29.8
27,2 786,1 11,2 3,0 -88,7 -4,6 -0,2 -1,1 0,0 0 27,2 770,5 11,2 3,0 -88,7 -4,6 -0,2 -1,1 0,0 0 27,0 768,1 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0 4 26,9 766,9 21,1 6,0 -88,7 -4,7 -6,0 -1,0 0,0 1 29,9 776,9 21,1 6,0 -88,7 -4,7 -7,7 -0,9 0,0 0 29,9 771,2 21,1 6,0 -68,7 -4,7 -8,1 -0,9 0,0 1 27,0 772,4 10,8 6,0 -88,7 -4,7 -8,2 -0,9 0,0 1	0,	11 3 2 11 17	11 11 12 VI	10000000	012		42,5	-3,2	1,7	0,0	0,0	6,1	43,7	44.2
27,2 770,5 11,2 3,0 -88,7 4,6 -0,2 -1,1 0,0 27,0 768,1 10,8 6,0 -88,7 4,7 -8,2 -0,9 0,0 26,9 766,9 21,1 6,0 -88,7 4,7 -6,0 -1,0 0,0 29,9 766,9 21,1 6,0 -88,7 4,7 -7,7 -0,9 0,0 29,9 771,2 21,1 6,0 -88,7 4,7 -8,1 -0,9 0,0 27,0 772,4 10,8 6,0 -88,7 4,7 -8,2 -0,9 0,0	0,0		N11 1011 VII		000	0	44,3	13.1	1,7	0,0	0,0	6	-45,4	98,0
27,0 768,1 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0 25,9 766,9 21,1 6,0 -68,7 -4,7 -5,0 -1,0 0,0 29,9 766,9 21,1 6,0 -68,7 -4,7 -7,7 -0,9 0,0 29,9 771,2 21,1 6,0 -68,7 -4,7 -8,1 -0,9 0,0 27,0 772,4 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0	0.0		1011 011	200	22	19.	44,4	5	1,7	0'0	0'0	on —	45,5	0,84
29,9 766,9 21,1 6,0 -88,7 -4,7 -6,0 -1,0 0,0 29,9 766,9 21,1 6,0 -88,7 -4,7 -7,7 -0,9 0,0 29,9 771,2 21,1 6,0 -88,7 -4,7 -81 -0,9 0,0 27,0 772,4 10,8 6,0 -88,7 -4,7 -82 -0,9 0,0	0.00	TI 10	0.11	C-120	1300	con.	44,9	-	-1,7	0'0	0,0		1,8	9,94
29,9 766,9 21,1 6,0 -88,7 -4,7 -7,7 -0,9 0,0 29,9 771,2 21,1 6,0 -68,7 -4,7 -8,1 -0,9 0,0 27,0 772,4 10,8 6,0 -88,7 -4,7 -82 -0,9 0,0	0,0	111			1411	183	45.8	13.1	-1,7	0,0	0'0	20-65	0'75	47,5
29,9 771,2 21,1 6,0 -68,7 -4,7 -8,1 -0,9 0,0 27,0 772,4 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0	6,0 88			THE DAY			46,0	7	1,7	0,0	0,0	2011	47,2	47.7
27,0 772,4 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0	6,0 -88	-		CHIRC	0		46,4	-13	-1,7	0,0	0,0	1,9	47,7	48,1
TOTAL CONTROL	0	4.7	-	-0,9	0'0	315	47,8	3,1	17	0,0	0,0	6,1	49.0	49.5
-69,6 -4,7 -5,4 -3,0 0,	B		0.00	VENT S	0	1600	28,7	-3,3	8,	£5		1,9	22,3	
4758,7 3,0 -70,3 -4,7 -1,0	3,0 -70,	-	0	00	0,0	0,0	30,3	33	5	-9,0		GD.	19.9	
Radiader Beschickung Anlage 107,0 1014, 4882,2 3,0 -71,1 -4,7 -0,8 -3,9 0,0 0,0	3,0		d.n	o	ZATE:	20958	29,5	-33	<u>~</u>	-9,0		4.9	19,1	
Lkw/lFz Pumpe Gärrest Abfuhr BGA 109,6 1055, 3,0 -71,5 -4,7 -0,5 -7,0 0,0 0,0 Bestand Pos. 2	_		0.0	-	00	00	29,0	2	5	151		6 0	12,4	
Lkw/rFz Fahrspur Kartoffellagerhalle 91,1 913,4 647,9 3,0 -70,2 -4,7 -5,5 -2,8 0,0 1,4	3,0		-	Deather.	ec.	-751	12,4	-333	7	1,0		9'0	10,7	
Lkw/lFz Pumpe Ani. Gülle 109,6 1035, 3,0 -71,3 -4,7 -2,4 -5,8 0,0 0,0			1//	00	CUETO	CUFO	28,4	-33	60	-16,8		0'0	8,3	
Lkw/lFz Pumpe Gärrest Abfuhr BGA 109,6 1002, 3,0 -71,0 -4,7 -11,1 -3,8 0,0 0,0 Planung		47	- 500	00	LHSS	2093.51	22,0	33	5	-120		1,0	1.7	
Lkw/lFz Fahrspur Gärrest Abführ BGA 90,6 944,2 573,4 3,0 -70,5 -4,7 -5,8 -2,9 0,0 0,5 Planung	3,0 -70		W		00	un.	10,1	20	60 77	-1,2		0,1	8,5	
91,4 932,9 684,2 3,0 -70,4 -4,7 -4,7	3,0				DEN UN	STATE OF	12,0	-33	<u>1</u>	19		2,0	5,7	
	3,0 -89	222		14.2717			9	333	60 7	ρ'n		2,0	2,7	

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Ouelle	LW	υ	loder S	\$	Adiv	Agr	Abar	Aatm	ADI	dLref	9	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	1	2
	dB(A)	ш	m,m²	뛰	명	帘	B	명	田田	dB(A)	dB(A)	田田	dB	留	명	명	dB(A)	dB(A)
IO-Nr. 03 mögliche Baugrenze RW,T 55 dB(A)	dB(A)	HW,N	40 dB(A)	151	35 dB(A) L	LrN 33	dB(A)								1 4		
Kartoffellager 4 - Lüftungskulisse 2	88,0	579,4	5,8		-88,3	4.55	-0,4	-23	0'0	1,7	22,2	-2,9	97		0,0	1,9	21,2	20,6
BHKW Containeranlage (Fabrikat 2G)	98,0	673,9		3,0	9'19-	4,6	-5,2	-21	0'0	0,0	21,6	13.	47	0,0	0'0	1.9	20,4	19,9
Kartoffellager 4 - Lüffungskulisse 1	88,0	582,7	5,8		8,3	4,5	-0,4	-2,4	0,0	1,0	21,4	-29	9		0,0	6.	20,4	19,8
Biomethanaufbereitung	91,0	651,7		3,0	-67,3	4.6	0,0	-1,3	0'0	0,0	20,9	-32	-1,7	0'0	0'0	6	19,6	18,1
BGHVA 2-Fas, West, Tür	90'8	545,6	3,55		-66,7	4,6	4.8	6'0-	0'0	0'0	20,6	7	-17		0,0	1,9	19,5	19,0
Kartoffellager 2 - Lüffungskulisse 1	88,0	596,1	5,0	6,0	-96,5	4.5	-0,1	-2,4	0.0	0.0	20,5	2,9	-1,8		0'0	1,9	19,5	18,9
Kartoffellager 3 - Lüffungskulisse 2	88,0	586,0	5,8	6,0	-86,4	4,5	-0,3	-24	0'0	0'0	20,4	-29	1,6		0,0	1,9	19,4	18,8
Kartoffellager 2 - Lüffungskulisse 2	88,0	592,8	8,5	6,0	-86,5	4,5	-0,2	-2,5	0'0	0'0	20,4	-29	9,1-	0,0	0,0	1,9	19,4	18,8
Kartoffellager 3 - Lüftungskulisse 1	88,0	589,4	5,8	6,0	-86,4	4.5	-0,3	-25	0'0	0'0	20,4	-29	9,1		0,0	1,9	19,4	18,8
Kartoffellager 1 - Lüttungskulisse 1	88,0	603,3	5,8	6,0	9'99-	4,5	-0,2	-2,5	0'0	0,0	20,2	-2,9	9,7		0,0	4,9	19,2	18,6
Kartoffellager 1 - Lüffungskulisse 2	88,0	599,8	5,8	6,0	9,98	4.5	-0,3	-2,4	0,0	0,0	20,2	-29	1,6		0,0	6.	19,2	18,6
Gärrestfrocknungsanlage Regenis GT	93,0	768,3	114,7		-88,7	4.6	-1,2	1,5	0'0	0'0	20,0	-3,2	- T	0,0	0,0	6	18,7	18,2
BGHVA 1-Abluft Ventilator	84,3	545,7		6,0	-66,7	4,6	-0,7	17	0'0	0'0	18,3	3,0	9/1-		0,0	1,9	17,2	16,6
BGHVA 1 Luffkühler Ventilator	84,3	543,1		3,0	-86,7	4,5	7'0-	-1,0	0,0	2,2	17,6	-3,0	1,6	0.0	0,0	1,9	16,5	16,0
Dachlüffer 1 Annahmebehälter	85,0	5'699		3,0	-67,5	4,5	0,0	-0,1	0.0	0.0	15,9	-3,0	9,1		0,0	6,1	14,8	14,3
Dachlüffer 1 Lagerbehätter IV	85,0	683,7		3,0	2.73	4.5	0,0	-0,1	0.0	0,0	15,7	-30	9,1		0,0	1,9	14.6	14,1
Dachlüfter 1 Fermenter I	85,0	687,1		3,0	-67.7	4.5	0.0	-0.1	0'0	0'0	15,7	-30	9,7		0,0	6,1	14,6	14,0
Dachlüfter 1 Fermenter III	85,0	689,0		3,0	-67,8	4,5	0,0	-0,1	0,0	0'0	15,6	-3.0	9,7	0,0	0,0	1,9	14,6	14,0
Dachlüfter 2 Fermenter I	85,0	696,1		3,0	8,78	4,5	0,0	1,0	0,0	0,0	15,5	30	9,1-		0,0	4.9	14,5	13,9
Dachlüffer 2 Annahmebehälter	85,0	673,3		3,0	8,78	4.5	-0'3	-0,1	0'0	0'0	15,5	30	9		0,0	6	14,4	13,9
Dachlüfter 1 Nachgärer II	85,0	711,4		3,0	-88,0	4,5	0,0	-0,1	0'0	0'0	15,4	3,0	9		0,0	1,9	14,3	13,7
BGHVA 2 Luffkühler Ventilator	84,3	540,4		3,0	9'99-	4,5	-3.2	-1,0	0,0	2,4	15,3	30	-1,6	0,0	0'0	1,9	14,2	13,7
Dachüffer 1 Nachgärer	85,0	695,6		3,0	-67,8	4,5	-0,2	-0,1	0'0	0'0	15,3	3,0	7,6		0'0	6,1	14,2	13,7
Dachlütter 1 Fermenter II	85,0	713,6		3,0	-88	4,5	0-	-0,1	0'0	0,0		-30	9,1	0,0	0,0	1,9		13,6
BGHVA 2-Abluft Ventiator	84,3	543,3		6,0	46,7	4,6	39	-1,0	0'0	0'0	15,1	-3.0	9,1-	0,0	0,0	1,9	14,0	13,5
Dachlüfter 1 Fermenter IV	85,0	732,9		3,0	-68,3	4,5	0,0	-0,1	0'0	0,0	15,1	3,0	9,1	0'0	0'0	1,9	14,0	13,4
BGHVA 2-Zuluftgitter	88,6	545,6	0,5	6,0	1987	4,6	-8,2	7	0,0	0,0	15,0	32	17	0,0	0,0	1	13,8	13,3
Dachlüfter 1 Lagerbehälter II	85,0	757,1		3,0	9,89	4,5	0,0	-0,1	0'0	0'0	14,8	30	7,1-	0'0	0,0	6,	13,7	13,1
Feststoffeintrag mit Flüssigfuttereinheit II	95,0	693,3	30,2	3,0	8'29-	4,6	0.0	-30	0'0	0'0	22,6	32	-17	-7,8	-7,8	1,9	13,6	13,1
Dachlüffer 1 Lagerbehälter III	85,0	761,9		3,0	9'89-	4,6	0,0	-0,1		0,0		30	7,7	0,0	0,0	1,9	13,6	13.1

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Dachlüfter 2 Fermenter II 85,0 BGSW-Ablutventilator Gärresttrocknungsanlage Regenis GT 82,2 Dachlüfter 1 Annahmebehälter 85,0 Bachlüfter 2 Nachgärer I 85,0 BGHVA 1 Luftkühler Lamelen 83,9	8	_			-						1	1				200000		
nns GT		T I	m,m²	gp	gp B	뛰	甲	田田	GB C	dB(A)	dB(A)	eB B	贸	dB	g	田	dB(A)	dB(A)
nis GT		720,7		0	- 1,88	4,5	50-	-0,1	0,0	0,0	14,7	-3.0	1,6		0,0	1.9	13,6	13,0
enis GT		571,8		-	1,98	9,4	//5/	Į.	0'0	0'0	14,7	5	7,1-		0,0	6	13,6	13,0
fe W		663,5	142,0	0	- 4'19	4,6	1770	-1,3	0'0	0'0	14,4	3,2	-1,7		0,0	1,9	13,2	12,7
W		775,1	Ī	0	88.8	4.5		-0,1	0,0	0,0	14,4	5	-1,7		0'0	1,9	13,2	12,7
XV		794,6		0	0,69	4,6	-	1,0-	0.0	0'0	14,3	7	1,7	0,0	0,0	1,9	13,1	12,6
77		543,1		0	66,7	4,6		1.0	0'0	7	14,2	5	1,7		0,0	1,9	13,1	12,6
	85,0 7	789,5			688	4,6		1.0	0'0	0'0	14,2	57	47		0,0	6,1	13,1	12,5
Dachlüffer 1 Lagerbehälter 85,0		739,8		3,0	68,4	4,5	60	1,0	0,0	0,0	14,1	-3.0	9,7	0,0	0,0	6,	13,0	12,5
Dachlüffer 1 Lagerbehälter 85,0		795,8		0	- 0'69	4,6		0,1	0,0	0,0	14,1	- 1	17		0,0	6.	13,0	12,5
Dachlüfter 2 Fermenter IV 85,0		749,9		0	- 5'89	4,5		0,1	0'0	0'0	14,1	30	7,1-	0,0	0,0	6	13,0	12,4
Dachlüfter 2 Fermenter 85,0		774,2		-	- 8,89	4,6		0,1	0'0	0'0	14,1	4	-17	0'0	0,0	1,9	12,9	12,4
Dachlüfter 2 Fermenter III 85,0		713,8		0	- 1,89	4.5		0,1	0,0	0,0	12,7	-3,0	9,7	0.0	0,0	1,9	11,6	11.1
BHKW-Fas. Sud; Tur 82,3		747,1	6,3	0	5,88	4,6	-0.1	-26	0.0	0'0	12,5	3,2	1,7	0'0	0,0	1,9	11,2	10,8
Dachlüfter 1 Fermenter 85,0		773,8			8,89	4,6		-0,1	0,0	0,0	12,0	£.	-1,7	0.0	0'0	1,9	10,9	10,4
BGHVA 2 Luffkühler Lamellen 83,9		540,5		0	86.6	4.6	8,5	1,0	0'0	4,2	4,1	5,4	47	0'0	0,0	6,1	10,2	2'6
Betriebshalle-Fas, Süd; Tor 80,1		2000	20,3	110	- 68.5	4,6	-	9,1	0,0	301	11,2	-3,2	4,7	0,0	0,0	6,1	6,6	9.4
Dachlüffer 2 Nachgärer II 85,0		1		0	4,88	4,5		1,0	0,0	100	10,4	3.0	9	0,0	0,0	4.9	9,3	8,7
Feststoffeintrag mit Flüssigfuttereinheit 95,0		699,1	28,7	3,0	6'19	4,6	_	20	0'0	1555	17,4	32	7,1-	-7,8	-7,8	6	8,4	6'1
Dachlüffer 2 Lagerbehälter IV 85,0		721,4	N.	-	68,2	4,5	5,9	0,1	0'0	0	9,3	3,0	9	0'0	0,0	1,9	8,3	1'1
BGHVA 2-Abluft passiv 78,0		542,8			- 1,39	4,6		1,0	0,0	0	9'8	30	-1,8	0,0	0,0	1,9	7,5	6,9
Dachlüffer 2 Nachgärer 85,0		721,0		3,0	68,2	4,5	500	-0,1	0.0		8,4	30	9,7	0,0	0,0	1,9	7,3	6,7
Dachlüfter 1 Nachgärer 1 85,0		792,2		0	- 00'69	4,6	-	0,1	0'0	2.04	8,0	<u>بر</u>	-1,7	0,0	0,0	1,9	6'9	6,3
Dachlüfter 2 Lagerbehälter II 85,0		791,3		3,0	69.0	4,6	2012	-0,1	0'0	V. E	7,8	57	47	0'0	0,0	6,1	6,7	6,1
BGHVA 1-Fas, Ost, Tür 90,6		550,1	3,5	6,0	86.8	4,6	17.71		0,0	sai	7,4	7	17	0,0	0'0	6,1	6,3	5,8
BGSW-Zuluftgitter 77,7		571,8	j)	-	1,39	7,0	4.7	7	0,0	1807	7,2	-	1,7	0,0	0,0	6,	6,0	5,5
Dachlüffer 2 Lagerbehälter III 85,0		797,2		3,0	- 0'69	4.6	-7.4	0,1	0'0	SAM.	6'9	57	7,1-	0,0	0,0	6)	5,7	5,2
BGHVA 1-Abluft passiv 78,0		545,3		0	66,7	4,6	65	1,1	0'0	388	6,8	-3,0	9/1-	0'0	0,0	1,9	5,7	5,2
BGMKOA LAbluffgitter 78,0		542,2		0	- 1,38	100	6.0	1,0	0,0	0,0	6,4	£.	7,1-	0,0	0,0	1,9	5,3	4,7
BGMKOA LZuluftgitter 1 78,0		543,0			65,7	4,6	88	1,0	0.0	0'0	5,9	7	1,7	0'0	0,0	6,1	4,7	4,2
Dachluffer 2 Lagerbehälter 85,0		762,5		0	989	1	-	-0,1	0,0	0,0		£	1,7	0.0	0'0	1,9	4,6	4,0
BGSW-Fas. West; Tür 75,2	-	572,5	2,0	-	88.1	96	m	1,0	0,0	0,0	5,7	13.1	47	0'0	0,0	6,1	4,5	4,0

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

cher	i	מט	oder S	2	Adiv	Agr	Abar	Astm	AD	dLref	9	Cmet,T	Cmet,N	d.w.T	d.w.N	ZR	5	2
Sticksbiffeinheit Wärmespeicher BGMKOA LZulufigitter 2	(A)(A)	ш	m,m2	留	B	명	甲	8	eg eg	dB(A)	dB(A)	dВ	田田	品	æ	田田	dB(A)	dB(A)
BGMKOA LZulufigitter 2	0'08	671,4		91	-87,5	4.6	-0,5	4,8	0,0	0'0	5,6	-32	11	0'0	0,0	1.9	4,3	3,9
	78,0	541,7		-	-86,7	4,6	-7,3	-1,0	0'0	0'0	5,4	e e	-1,7	0'0	0,0	6	4,2	3,7
Decriniter 2 Lagerbenaiter I	85,0	813,7		3.0	-89,2	4,6	7,8-	-0,1	0'0	0'0	4.4	5	-4.7	0'0	0,0	1,9	3,3	2,8
BGHVA 1-Zulufighter	88,6	550,2	0,5	6,0	-86.8	4,6	-19,8	7	0.0	0,0	5,3	-3,2	-1,7	0.0	0,0	1,9	2,1	1,6
Betriebshalle-Dach	73,8	9'094	223,4	3,0	9,88	4,5	-03	-0,5	0'0	0'0	2,9	-29	1,6	0,0	0'0	6,4	1,9	+,3
BGSW-Fas. Sūd	9'02	571,8	6,2	-	-86,1	4,6	-2,5	8'0-	0'0	0'0	2,6	7	-1,7	0,0	0,0	1,9	1,4	6'0
BGSW-Fas. West	0'02	572,5	5,4	6,0	-88,1	4.6	-1,8	-0,9	0'0	0'0	2,6	13.1	47	0,0	0,0	6,1	1,4	6'0
Feststoffeintrag mit Flüssigfuttereinheit!	95,0	787,9	28,7	3,0	68.8	4,6	40.	-21	0'0	0'0	9,7	-3.2	8,7	-7,8	-7,8	6,4	9'0	0,2
BGSW-Dach	6'69	573,0	5,3	3,0	-88,2	4.5		++	0,0	0,0	6,0	30	9,7	0,0	0,0	6.	-0,1	7,0-
Rührwerk Fermenter III	79,0	6,589	0	-	1.79	9.4	0,0	-5.0	0'0	0'0	4,7	19	1,1	4,8	48	en.	-1,2	1,7
Betriebshale-Fas. Süd	67,7	755,4	54,8	-	-68,6	4,6	-0,2	-0,5	0'0	0'0	1,0	13.	-17	0'0	0,0	1,9	-1,3	-1,8
BGHVA 2Fas. West	86,5	545,6	30,1	6,0	198	4,5	-20	7'0-	0.0	0,0	-0,4	-30	1,6	0,0	0,0	1,9	1,5	-21
BGHVA 1-Dach	67,2	549,1	35,2	3,0	86,8	4,5	9	-0,8	0.0	0'0	5,3	-29	9,1-	0'0	0,0	60,	23	-29
BGHVA 1-Fas. Sūd	65,2	545,8	22,6	6,0	66,7	4,6	-1,6	7,0-	0'0	0,0	4,1-	-30	9,1-	0.0	0,0	1,9	-24	-30
BGHVA 2-Dach	67,2	546,6	35,2	3,0	48,7	4.55	-0,9	-0,7	0'0	0'0	-1,7	-29	97	0'0	0,0	6,1	-26	-3,2
BGHVA 2-Fas, Sud	85,2	543,4	22,6	6,0	46.7	4,6	3.3	-0,7	0,0	0'0	-28	30	9,1-	0,0	0,0	6,1	3.8	4,4
BGMKOA II-Abluffgitter	78,0	554,0		6,0	69	4,6	-15,6	7	0,0	0,0	77	-	1,7	0,0	0,0	6.	-4,2	4.8
Gemis chkühler BHKW 1	87,0	743,1	-	3,0	4,88	4.6	-17,8	-23	0'0	0,0	F.	3,2	-1,8	0'0	0'0	6	4,4	4.9
BGHVA 1-Fas. West	67,0	548,0	34,1	6,0	86.8	4,6	-7,0	7'0-	0'0	9	-3,4	30	9/1-	0'0	0,0	1,9	4.4	-5,0
Betriebshale-Fas. Ost.	71,2	765,4	124,0		188,7	4,6	0.11	-0,2	0.0	0,0	-34	30	-1,7	0,0	0,0	4,9	4.5	151
Gemis chkühler BHKW 2	87,0	740,7		3,0	88,4	4.6	-18,2	-23	0'0	0'0	157	32	1,8	0.0	0,0	6,1	4.8	65
Rührwerk Fermenter IV	79,0	735,1			-683	4,6	4.2	-3.9	0'0	0,0	1,0	e7	-1,7	4.8	4.8	1,9	4.9	-5,5
Gasverdichter	86,0	743,5		0	88.4	4,6	-18,8	3.55	0'0	2,1	42	-32	47	0'0	0,0	4,9	55	-6,0
BHKW Zuluft 1	65,0	746,4	9'0	717	-68.5	4,6	-0,2	-22	0'0	0'0	4,4	- 5	1,7	0,0	0,0	6,1	-5,5	1,9
BHKW Zuluft 2	65,0	747,9	1,0	6,0	-88,5	4.6	-0,2	-2,2	0,0	0,0	4,4	7	1,7	0,0	0,0	6.	-5,6	19
BGHVA 2-Fas. Ost	67,0	547,7	33,7	6,0	8,39	9	-13,9	9'0-	0'0	1,1	4,7	30	9/-	0,0	0,0	6	605	-6,3
BGMKOA Il-Zuluftgitter 1	78,0	553,2	N.	6,0	-65,8	4,6	17.71	1,1	0'0	0'0	-5,2	÷.	-1,7	0'0	0,0	1,9	-6,4	69
BGMKOA ILZuluftgitter 2	78,0	554,5		6,0	6,58	4,6	-17.7	7	0,0	0,0	-52	7	-1,7	0,0	0,0	1,9	-6.4	69
BGSW-Fas, Nord	70,4	574,1	6,3	6,0	-66,2	4.6	-11,2	7,0-	0.0	0'0	-6,2	7	117	0'0	0,0	1,9	4.7-	6'1-
Betriebshale-Fas. Nord	9'69	766,6	84,6	6,0	-68,7	4,6	-10,2	-0,2	0'0	0'0	-8,2	Ę,	-1,7	0.0	0,0	1,9	-9.4	-9,9
BGHVA 1-Fas. Ost	88,4	550,2	29,7	0	8,39	4.5	-11.6	-0,7	0'0	0'0	-10,2	-30	97	0'0	0,0	1,9	-11,2	-11,8

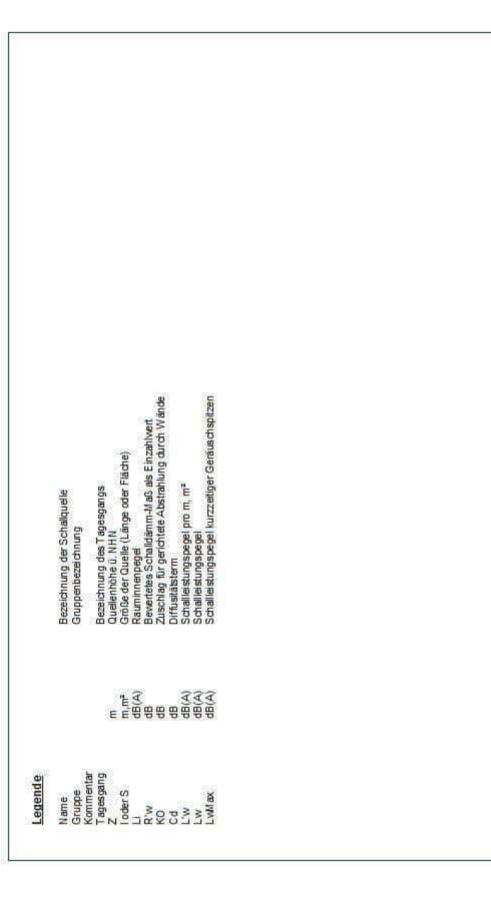
Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

Quelle	M	(7)	loder S	\$	Adiv	Agr	Abar	Aatm	ADI	dLref	প্র	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	15	2
	dB(A)	m	m,m²	铝	B	留	甲	땅	eB	dB(A)	dB(A)	8	8	명	명	땅	dB(A)	dB(A)
Sticksbiffeinheit Wärmespeicher	80,0	720,3	1	3,0	1,88	4.6	-19,6	4.7	0,0	0'0	-14,0	32	11	0'0	0,0	1,9	-15,3	-15,8
BHKW Abluft 1	70,0	755,7		6,0	-88,6	4,6	-16,4	6'0-	0'0	0'0	-14,4	7	-1,7	0'0	0,0	en en	-15,6	-16,1
BHKW Abluft 2	70,0	754,4	1,0	6,0	-68,5	4,6	-16,4	60-	0'0	0'0	-14,4	Ę.	-4,7	0'0	0,0	1,9	-15,6	-16,1
Rührwerk Fermenter I	79,0	702,6		3,0	6,78	4,6	-19,6	42	0.0	0.0	-143	F.	-1,7	4	4,8	4.9	-20,2	-20,7
Rührwerk Fermenter II	79,0	727,6		3,0	-68,2	4,6	-19,7	4.4	0'0	0'0	-14,9	5	1,7	4	4,8	6,0	-20,8	27,3
Rührwerk Fermenter I	79,0	785,3		3,0	-68,9	4,6	-19,7	4,7	0'0	0'0	-15,9	7	117	4,8	4,8	1,9	-21,8	-22,3
BGHVA 2, E-Raum-Fas. Nord; Tur	53,2	551,9	2,0	6,0	8,38	4,6	-16,9	1,1	0'0	0'0	-29,2	13.1	4,7	0'0	0,0	6,1	-30,4	-30,9
BGHVA 1, E-Raum-Fas. Nord; Tur	53,2	554,4	2,0	6,0	66,99	4,6	-17,8	Ť	0'0	0'0	-30,2	5	-1,7	0,0	0,0	6,4	4,16	-31,9
BGHVA 2, E-Raum-Fas. West	26,9	549,9	10,6	6,0	8,38	4,6	-0,3	8,0-	0,0	0'0	-38,5	30	9,1	0,0	0,0	6.	-38,6	1,04
BGHVA 2, E-Raum-Dach	27,2	550,9		3,0	-85,8	4,5	9'0-	-0,7	0'0	0'0	41,4	-2,9	1,6	0,0	0,0	en —	42,4	43,0
BGHVA 1, E-Raum-Dach	27,2	553,3	11,2	3,0	-85,9	4,5	-0,5	8,0-	0'0	0'0	41,4	-2,9	9/1-	0'0	0,0	1,9	47.4	43,0
BGHVA 1, E-Raum-Fas. West	26,9	552,3	10,6	6,0	-85,8	4,6	-11,0	7'0-	0,0	1,6	47,5	-3,0	1,6	0.0	0,0	1,9	-48,5	1,84
BGHVA 2, E-Raum-Fas. Ost	27,0	552,0	11	6,0	-85,8	4,6	-13,8	9'0-	0.0	3,7	48,1	-3,0	1,8	0.0	0,0	6,0	49,1	49.7
BGHVA 2, E-Raum-Fas. Nord	29,9	551,9	21,1	6,0	-65,8	4,6	-13,0	9'0-	0'0	0'0	48,1	-3,0	9,1	0.0	0,0	1,9	49,2	49.7
BGHVA 1, E-Raum-Fas. Nord	29,9	554,4		6,0	-85,9	4,6	-13,5	9'0-	0'0	0'0	48,6	-3,0	9,7	0,0	0,0	1,9	-49,6	-50,2
BGHVA 1, E-Raum-Fas. Ost	27.0	554,4	10,8		-86,99	4,6	-13,7	-0,7	0,0	0'0	-51,7	-3,0	9,7	0,0	0,0	6.	-52,8	-53,4
Teleskoplader Verladung Kartoffelager	107,0	611,5	1927,7	3,0	1987	4.6	-6,8	-25	0,0	1,8	31,2	-3,2	11	-5,	i i	6.1	24,9	200000
Radlader Beschickung Anlage	107,0	734,9	4882,2	3,0	-88,3	4,6	8'0-	-30	0'0	0,4	33,6	32	-1,7	-9,0		6	23,3	
Radiader Beschickung Anlage	107,0	702,2	4758,7	3,0	6,78	4,6	-1,9	-2,9	0'0	0'0	32,6	-3,2	1,7	-9,0		1,9	22,3	
Lkw/Fz Pumpe Gärrest Abfuhr BGA Bestand Pos. 2	109,6	772,6		3,0	-88,8	4,6	0,0	-63	0'0	0,0	32,9	-32	٠ <u>٠</u>	-151		1,8	16,4	
Lkw/Fz Fahrspur Kartoffellagerhalle	91,1	661,4	847,9	3,0	-87,4	4.6	-7,3	-20	0,0	2,2	14,9	32	1,7	1,0		9,0	13,3	
Lkw/Fz Pumpe Ant. Gülle	109,6	781,9	2	3,0	6,88	4,6	-7,5	-3,5	0'0	0'0	28,2	-32	9,1	-16,8		0'0	8,1	
Lkw/Fz Fahrspur Gärrest Abfuhr BGA Bestand	2'18	776,0	1,782	3,0	8,8	4,6	99	-28	0'0	9,0	11,4	32	1,8	-42		1,0	7,9	
Lkw/lFz Abkippen Mist	87,4	7,687	257,4	3,0	-68,9	4,6	-0,1	-29	0'0	0'0	13,9	-32	1,8	15		2,0	9'1	
Lkw/lFz Fahrspur Anl. Mist	89,1	759,0	404,2	3,0	9'88-	4,6	13.1	-28	0,0	9'0	13,6	-3,2	60 T	19		2,0	7,3	
Lkw/Fz Fahrspur Gärrest Abfuhr BGA Planung	90'6	692,7	573,4	3,0	-67,8	4.6	9	-21	0'0	5'0	10,6	-32	47	-1,2		1,0	7,1	
Lkw/IFz Fahrspur Ant. Mist	91,4	684,3	684,2	3,0	-67.7	4,6	-83	-21	0'0	9'0	12,3	-32	1,7	47		2,0	6,1	
Lkw/Fz Pumpe Gärrest Abfuhr BGA Planung	109,6	748,5		3,0	5,89,5	4.6	-16,6	-3,0	0,0	0,0	19,8	3,2	8,	-120		1,0	5,5	

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Abholung Gärrest

45 de de de	D 1	-		223	F	Charles and the		200		200	G000 9	N Q	Quelle
GD GD GD(A)	1	-	- 1						_		E	(A)CE	CHOOL STANDARD OF THE STANDARD
5,4	no.		14.1				-		_	m	B'50)	0,60	LKW/IFZ Fanrspur Ant Gulle
2,0	675A	9,1	757.0	ALC:	9,1-		4,6		_	63,6	638,8	87,8	Lkw/Fz Stellgeräusch Waage Anl, Mist
70	17 -17	,5 -32	200	333	-	-10,3		-67,4	_		663,6	109,6	Lkw/IFz Pumpe Anl. Gülle
-15,1 1,8 -20	SWIN	14,5 -3,2	0,0	0,0	-4,8	-19,4	4.6	-89,2	3,0		811,6	109,6	Lkw/IFz Pumpe Garrest Abfuhr BGA Bestand Pos. 1
non-	1,7	11,9		0.01	-1,9	-9.2		- 1.78	3,0	749,4	683,0	8,18	Lkw/lFz Fahrspur Anl Gülle
2,0	rarous.	-1-7	1.30	150	-1,7 0	-15,0 -	_	-68,3	_		737,0	87,8	Lkw/Fz Stellgeräusch Waage Anl. Mist
2,4	1570	- 01	0,0 1,2	100	-1,7 0		4.6	- 31		67,2	737,0	8,78	Lkw/IFz Stellgeräusch Waage Anl, Gülle
-120 0,0 -6,1		1 -3,2	0,0	0,0	1100-00	est i	0	-	3,0	2/	638,8	87,8	Lkw/IFz Stellgeräusch Waage Anl. Gülle
2	17 -17	m	4		-25 0	-20,1	4.6	-67,4		183,6	863,5	87,4	Lkw/Fz Abkippen Mist
2.0	-17			3	-		_	_	_		8388	87.8	Liverity Challograne of Washa Ant Mist
•	24						_	_			0000	010	The Party of the P
-6,0 2,4 5,1	no		0,4	0,0		15	-		3,0	one	163,9	9,68	Lkw/lFz Fahrspur Anl Gulle
2,4	715	_	l la	000	-		-	- 68,7		454,8	763,9	9'68	Lkw/IFz Fahrspur Anl Gülle
db db db(A)	1	-	-			-		-	_		E	(A) (B)	
dB dB dB(A) dB(A)	89 Bb		dB(A) dB(A	明明	明	男		8	贸	m,m²	E	dB(A)	
שראין שראינא לא דון	et,T Cmet,	0.55			atm A	A PBT A					CY160	Z	Quelle

Anhang 4: Beurteilungspegel - Situation Regelbetrieb mit Abholung Gärrest


Beurteilungspegel nach TALärm Situation Regelbetrieb mit Abholung Gärrest

2000			
J-Nr.		Objektrummer	
mmissionsort		Bezeichnung des Immissionsortes	
utznu		Gebietsnutzung	
W		Stockwerk	
R		Fassadenausrichtung	
T'M'	dB(A)	Immissionshichtwert Tag	
W.W.	dB(A)	ImmissionshichtwertNacht	
11	dB(A)	Beurteilungspegel Tag	
Z	dB(A)	Beurteilungspegel Nacht	
5	dB(A)	Differenz zwischen Beurteilungspegel und Richtwert in Zeitbereich Lrff	
L'S	dB(A)	Differenz zwischen Beurteilungspegel und Richtwert in Zeitbereich LrN	
W.Tmax	dB(A)	Immissionsrichtwert für Maximalpegel Tag	
W.Nmax	dB(A)	Immissionsrichtwert für Maximalpegel Nacht	
Tmax	dB(A)	Maximalpedel Tag	
Nmax	dB(A)	Maxmalpegel Nacht	
LTmax	dB(A)	Differenz zwischen Beurteilungspegel und Richtwert in Zeitbereich LT, max	
UNMax	(A)B(Differenz zwischen Beurteilungspegel und Richtvert in Zeitbereich LN max	

Beurteilungspegel nach TALärm Situation Regelbetrieb mit Abholung Gärrest

Anhang 5: Berechnung der Geräuschemissionen - Situation Regelbetrieb mit Maisernte

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Maisemte

Name	Gruppe	Kommentar	Tagesgang	7	I oder S	_	S	ν V	5	3	LW	LWMex
				E	#E,E	dB(A)	뜅	田田	要	dB(A)	dB(A)	(A)(B)
Betriebshalle-Dach	BGA Bestand	Sandwichpaneele	24 h - 100%	28,6	223,4	0'02	25,0	0'0	9	50,3	73,8	
Betriebshale-Fas. Nord	BGA Bestand	Sandwichpaneele	24 h - 100%	23,7	84,6	0'02	25,0	3,0	1000	50,3	69,6	
Betriebshale-Fas. Ost	BGA Bestand	Sandwichpaneele	24 h - 100%	24,6	124,0	0'02	25,0	3,0	67	50,3	71,2	
Betriebshale-Fas. Sūd.	BGA Bestand	Sandwichpaneele	24 h - 100%	24,0	54,8	0'02	25,0	3,0	er	50,3	67.7	9
Betriebshalle-Fas. Süd; Tor	BGA Bestand	offen	24 h - 100%	23,0	20,3	70,0	0,0	3,0	-	0'29	80,1	
BHKW-Fas. Sūd; Tür	BGA Bestand		24 h - 100%	22,0	6,3	95,0	20,0	3,0	er	74,4	82,3	
BHKW Abluff 1	BGA Bestand	in Fassade Nord	24 h - 100%	25,0	1,0			3,0		0'02	0.07	
BHKW Abluft 2	BGA Bestand	in Fassade Nord	24 h - 100%	25,0	1,0			3,0	110	0'02	70,0	0
BHKW Zuluft 1	BGA Bestand	in Fassade Süd	24 h - 100%	24,9	9'0			3,0	111	68,1	65,0	
BHKW Zuluft 2	BGA Bestand	in Fassade Süd	24 h - 100%	25,0	1,0			3,0	114	65.0	65,0	
Dachlüffer 1 Annahmebehälter	BGA Bestand		24 h - 100%	25,8				0,0	(Divi)	85.0	85,0	
Dachlüfter 1 Fermenter I	BGA Bestand		24 h - 100%	25,6				0,0	14	85,0	85,0	
Dachlüfter 1 Fermenter III	BGA Bestand		24 h - 100%	25,7	H			0,0	(94)(1)	85.0	85,0	
Dachlüfter 1 Fermenter IV	BGA Bestand		24 h - 100%	25,6	114			0'0	1940	85.0	85,0	
Dachlüffer 1 Lagerbehälter I	BGA Bestand		24 h - 100%	25,8				0,0	2441.6	85,0	85,0	
Dachlüffer 1 Lagerbehälter II	BGA Bestand		24 h - 100%	25,7	H			0,0	1940	85.0	85,0	
Dachlüffer 1 Lagerbehälter III	BGA Bestand		24 h - 100%	25,5	i H			0'0	1940	85.0	85,0	
Dachlüffer 1 Lagerbehälter IV	BGA Bestand		24 h - 100%	25,7	H			0'0	1940	85.0	85,0	
Dachlüffer 1 Nachgärer I	BGA Bestand		24 h - 100%	25,7				0,0	2441	85,0	85,0	
Dachlüffer 1 Nachgärer II	BGA Bestand		24 h - 100%	25,6	19			0'0	1940	85.0	85,0	
Dachlüffer 2 Annahmebehälter	BGA Bestand		24 h - 100%	25,8				0,0	(94)	85,0	85,0	
Dachlüfter 2 Fermenter I	BGA Bestand		24 h - 100%	25,6				0,0	2441	85.0	85,0	
Dachlüffer 2 Fermenter III	BGA Bestand		24 h - 100%	25,5	14			0,0	(S-A(1)	85,0	85,0	
Dachlüfter 2 Fermenter IV	BGA Bestand		24 h - 100%	25,6	174			0'0	194	85.0	85,0	
Dachlüffer 2 Lagerbehälter I	BGA Bestand		24 h - 100%	25,8				0,0	244(1)	85,0	85,0	
Dachlüffer 2 Lagerbehäffer II	BGA Bestand		24 h - 100%	25,6	110			0,0	194	85.0	85,0	
Dachlüffer 2 Lagerbehälter III	BGA Bestand		24 h - 100%	25,4	H			0,0	194	85.0	85,0	
Dachlüffer 2 Lagerbehälter IV	BGA Bestand		24 h - 100%	25,5				0.0	Ore	85.0	85,0	

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Maisemte

Name	Gruppe	Kommentar	Tagesgang	7	I oder S	-	RW	КО	MJ PO	M	LWMex
				E	т.m.	dB(A)	罗	gg gg	dB dB(A)	(B(A)	dB(A)
Dachlüffer 2 Nachgärer I	BGA Bestand		24 h - 100%	25,7				0,0	85.0	85,0	
Dachlüffer 2 Nachgärer II	BGA Bestand		24 h - 100%	25,4	111			0,0	85.0	85,0	
Feststoffeintrag mit Flüssigfuttereinheit I	BGA Bestand		24 h - 10 Min/h (Feststoffeintrag)	22,1	28,7		-	0,0	80,4	95,0	
Feststoffeintrag mit Flüssigfuttereinheit II	BGA Bestand		24 h - 10 Min/h (Feststoffeintrag)	22,1	30,2		-	0,0	80,2	95,0	V 0
Gärresttrocknungsanlage Regenis BGA Bestand GT	BGA Bestand		24 h= 100%	21,7	114,7		B	0,0	72,4	93,0	
Gasverdichter	BGA Bestand	westich BHKW	24 h - 100%	22,2	100			0,0	86,0	98,0	
Gemis chkühler BHKW 1	BGA Bestand	westich BHKW	24 h - 100%	21,7	1	Ī		0,0	87,0	87,0	
Gemis chkühler BHKW 2	BGA Bestand	westich BHKW	24 h - 100%	21,7	1	Ī		0,0	87,0	87,0	
Lkw/Fz Ablippen Mist	BGA Bestand	5 Kfz tags	6-22 Uhr - 5 Kfz	21,7	257,4			0,0	63,3	87,4	107,3
Lkw/frz Fahrspur Ant Gülle	BGA Bestand	4 Kfz tags	6-22 Uhr - 4Kfz	21,8	454,6	Ī		0,0	63,0	9'68	104,0
Lkw/Fz Fahrspur Anl. Mist	BGA Bestand	5 Kfz tags	6-22 Uhr - 5 Kfz	21,8	404,2	Ī		0,0	63,0	89,1	104,0
Lkw/Fz Pumpe Anl. Gülle	BGA Bestand	4 Kfz a 5 Minuten tags	6-22 Uhr - 20 Minuten	21,8		Ī		0,0	109,6	3,601 8	
Lkw/IFz Stellgeräusch Waage Anl. BGA Bestand Gülle	BGA Bestand	4 Kfz tags	6-22 Uhr - 4 Kfz	21,6	67,2		3	0,0	69,5	87.8	104,0
Lkw/IFz Stellgeräusch Waage Anl. BGA Bestand Mist	BGA Bestand	5 Kfz tags	6-22 Uhr - 5 Kfz	21,6	67,2		(ii)	0,0	69,5	87,8	104,0
Radlader Beschickung Anlage	BGA Bestand	120 Minuten tags	6-22 Uhr - 120 Minuten	21,7	4882,2			0,0	70,1	107,0	111,0
Rührwerk Fermenter I	BGA Bestand		24 h - 20 Min/h (Rührwerke)	24,7			M	0,0	79,0	79,0	
Rührwerk Fermenter III	BGA Bestand		24 h - 20 Min/h (Rührwerke)	24,7	191 IN		3	0,0	79,0	79,0	
Rührwerk Fermenter IV	BGA Bestand		24 h - 20 Min/h (Rührwerke)	24,6			-	0,0	79,0	79,0	
Sticksb ffeinheit Wärmespeicher	BGA Bestand	am Behälter Warmespeicher	24 h - 100%	21,7			e e	0,0	80,0	80,0	
BHKW Containeranlage (Fabrikat 2G)	BGA Planung		24 h - 100%	23,6			-	0,0	98,0	98,0	
Dachlüffer 1 Annahmebehäffer	BGA Planung		24 h - 100%	25,6				0,0	85.0	85,0	

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Maisemte

Nаme	Gruppe	Kommentar	Tagesgang	Z	I oder S	5	₹	KO	PO	EW	lw.	LwMex
				E	m,m.	dB(A)	쁑	粤	明	dB(A) d	(A)(A)	dB(A)
Dachlüfter 1 Fermenter I	BGA Planung		24 h - 100%	25,8				0,0	8	0'58	0'58	
Dachlüfter 1 Fermenter II	BGA Planung	<i>=</i> 7.	24 h - 100%	26,0	21		20.00	0'0		0'58	0'58	-77
Dachlüffer 1 Lagerbehälter	BGA Planung		24 h - 100%	26,1	14			0'0		0'58	0'58	
Dachüffer 1 Nachgärer	BGA Planung		24 h - 100%	25,7	17		- 50	0'0		0'58	0'58	-17
Dachlüfter 2 Annahmebehälter	BGA Planung		24 h - 100%	25,6	17		- 50	0'0		0'58	0'58	-77
Dachlütter 2 Fermenter I	BGA Planung		24 h - 100%	25,7	17		- 50	0'0		0'58	0'58	-77
Dachlütter 2 Fermenter II	BGA Planung		24 h - 100%	25,9	72		7	0'0		0'58	85,0	
Dachlüffer 2 Lagerbehälter	BGA Planung		24 h - 100%	25,9	1		7	0'0		0,28	85,0	
Dachüfter 2 Nachgärer	BGA Planung		24 h - 100%	25,5	72		7	0'0		0,28	85,0	
Feststoffeintrag mit Flüssigfuttereinheit	BGA Planung		24 h - 10 Min/h (Feststoffeintrag)	22,2	28,7			0,0	8	80,4	95,0	
Gärresttrocknungsanlage Regenis BGA Planung	BGA Planung		24 h - 100%	21,5	142,0			0,0		71,5	93,0	
Lkw/Fz Abkippen Mist	BGA Planung	5 Kfz tags	6-22 Uhr - 5 Kfz	21,8	183,6			0,0	9	64,8	87,4	107,3
Lkw/Fz Fahrspur Ant Gülle	BGA Planung	1 Kfz tags	6-22 Uhr - 1 Kfz	21.7	749,4		- 0	0'0	9	63,0	8,16	104,0
Lkw/Fz Fahrspur Anl. Mist	BGA Planung	5 Kfz tags	6-22 Uhr - 5 Kfz	21,8	684,2		- 0	0,0	9	63,0	91,4	104,0
Lkw/Fz Pumpe Anl. Gülle	BGA Planung	1 Kfz a 5 Minuten tags	6-22 Uhr - 5 Minuten	21,6				0'0	+	109,6 1	109,6	V
Lkw/Fz Stellgeräusch Waage Anl. BGA Planung Gülle	BGA Planung	1 Kfz tags	6-22 Uhr - 1 Kfz	21,9	63,6			0,0	9	8,69	87.8	104,0
Lkw/Fz Stellgeräusch Waage Ant. BGA Planung Mist	BGA Planung	5 Kfz tags	6-22 Uhr - 5 Kfz	21,9	63,6			0,0	9	8,69	8,78	104,0
Radlader Beschickung Anlage	BGA Planung	120 Minuten tags	6-22 Uhr - 120 Minuten	22,1	4758,7			0,0		70,2	107,0	111,0
Rührwerk Fermenter I	BGA Planung	1 /	24 h - 20 Min/h (Rührwerke)	24,8	14 TH			0,0		0,67	0,67	
Rührwerk Fermenter II	BGA Planung		24 h - 20 Min/h (Rührwerle)	25,0				0,0	(E)	0'62	0'62	
Stickstoffeinheit Wärmespeicher	BGA Planung	am Behälter Wärmespeicher	24 h - 100%	21,5				0.0		80,0	0'08	
Biomethanaufbereitung	Biomethan	300	24 h - 100%	21,7				0.0	51	91,0	91,0	
BGHVA 1-Abluft passiv	Einspeiseanlage	in Fassade Sūd	24 h - 100%	24,2				3,0		78,0	0'84	(

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Maisemte

	- Adding	Kommentar	Tagesgang	7	l oder S	5	Š	5	3		à	LWNidA
				E	m,m	dB(A)	뜅	田田	8	dB(A)	(A)(D)	dB(A)
BGHVA 1-Abluff Ventilator	Einspeiseanlage	in Fassade Süd	24 h - 100%	24,2				3,0	25.00	84,3	84,3	
BGHVA 1-Dach	Einspeiseanlage		24 h - 100%	26,5	35,2	105,0	56,0	0,0	67	51.7	67,2	
BGHVA 1-Fas. Ost	Einspeiseanlage	. 0	24 h - 100%	24,4	29,7	105,0	56,0	3,0	en	51,7	66,4	Ì
BGHVA 1-Fas. Ost, Tür	Einspeiseanlage	Stahtür geschbssen	24 h - 100%	22,9	3,5	105,0 20,0	20,0	3,0	en	85,2	90'6	Ĭ
BGHVA 1-Fas. Süd	Einspeiseanlage	in Fassade Süd	24 h - 100%	24,2	22,6	105,0	56,0	3,0	en	51,7	65,2	Ĭ
BGHVA 1-Fas. West	Einspeiseanlage		24 h - 100%	24,2	34,1	105,0	56,0	3,0	n	51.7	67,0	Ĭ
BGHVA 1-Zuluffgtter	Einspeiseanlage	in Fassade Ost	24 h - 100%	22,4	9'0			3,0		91,6	988	
BGHVA 1 Luffkühler Lamellen	Einspeiseanlage	südlich BGHVA 1	24 h - 100%	23,2	1			0'0	ANG I	83,9	83,9	
BGHVA 1 Luffkühler Ventilator	Einspeiseanlage	südlich BGHVA 1	24 h - 100%	24,7				0,0	276	84,3	84,3	
BGHVA 1, E-Raum-Dach	Einspeiseanlage		24 h - 100%	26,5	11,2	0'02	56,0	0,0	67	16,7	27.2	
BGHVA 1, E-Raum-Fas. Nord	Einspeiseanlage	. 9	24 h - 100%	24,3	21,1	0'02	56,0	3,0	en	16,7	29,9	
BGHVA 1, E-Raum-Fas, Nord; Tür	Einspeiseanlage	Stahtur geschbssen	24 h - 100%	22,8	2,0	70,0	20,0	3,0	67	50,2	53,2	
BGHVA 1, E-Raum-Fas. Ost	Einspeiseanlage		24 h - 100%	24,2	10,8	0'02	56,0	3,0	m	16,7	27,0	
BGHVA 1, E-Raum-Fas. West	Einspeiseanlage		24 h - 100%	24,2	10,6	70,0	56,0	3,0	en	16,7	26,9	
BGHVA 2-Abluft passiv	Einspeiseanlage	in Fassade Süd	24 h - 100%	24,2	H -			3,0	ACT.	78,0	78,0	V.
BGHVA 2-Abluft Ventilator	Einspeiseanlage	in Fassade Süd	24 h - 100%	24,2	1			3,0	1	84,3	84,3	
BGHVA 2-Dach	Einspeiseanlage		24 h - 100%	26,5	35,2	105,0	56,0	0'0	m	51,7	67,2	
BGHVA 2Fas. Ost	Einspeiseanlage		24h-100%	24,2	33,7	105,0 56,0	56,0	3,0	en	51.7	0'29	
BGHVA 2Fas. Süd	Einspeiseanlage	in Fassade Süd	24h-100%	24,2	22.6	105,0	56,0	3,0	en	51.7	65,2	
BGHVA 2-Fas. West	Einspeiseanlage		24h-100%	24,4	30,1	105,0 56,0	56,0	3,0	en	51.7	5'99	
BGHVA 2-Fas. West, Tür	Einspeiseanlage	Stahfür geschbssen	24 h - 100%	22,9	3,5	105,0	20,0	3,0	eŋ	85,2	90'6	
BGHVA 2-Zuluftgitter	Einspeiseanlage	in Fassade West	24 h - 100%	22,4	9'0			3,0	200	91,6	9'88	
BGHVA 2 Luffkühler Lamellen	Einspeiseanlage	südlich BGHVA 2	24 h - 100%	23,2	15			0'0	17.6	83,9	83,9	
BGHVA 2 Luftkühler Ventilator	Einspeiseanlage	südlich BGHVA 2	24 h - 100%	24,7	1			0'0	57/6	84,3	84,3	
BGHVA 2, E-Raum-Dach	Einspeiseanlage		24 h - 100%	26,5	11,2	0'02	56,0	0'0	m	16,7	27.2	
BGHVA 2, E-Raum-Fas. Nord	Einspeiseanlage		24 h - 100%	24,3	21,1	70,0	56,0	3,0	ey	16,7	29,9	v.
BGHVA 2, E-Raum-Fas. Nord; Tur	Einspeiseanlage	Stahtur geschbssen	24 h - 100%	22,8	2,0	70,0	20,0	3,0	n	50,2	53,2	

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Maisemte

Name	Gruppe	Kommentar	Tagesgang	7	l oder S	⊐	¥	KO	PO	Š	IW.	LWMex
				E	m,m	dB(A)	쁑	田田	罗	dB(A)	dB(A)	dB(A)
BGHVA 2, E-Raum-Fas, Ost	Einspeiseanlage		24 h - 100%	24,2	10,8	0'02	58,0	3,0	n	16,7	27.0	
BGHVA 2, E-Raum-Fas. West	Einspeiseanlage		24 h - 100%	24,2	10,6	0'02	58,0	3,0	eq	16,7	26,9	
BGMKOA LAbluftgitter	Einspeiseanlage	in Fassade West	24 h - 100%	23,8	1			3,0	77	78,0	78,0	
BGMKOA LZuluftgitter 1	Einspeiseanlage	in Fassade West	24 h - 100%	22,8	10			3,0	7	78,0	78,0	
BGMKOA LZuluftgitter 2	Einspeiseanlage	in Fassade West	24 h - 100%	22,8	10			3,0	7	78,0	78,0	
BGMKOA II-Abluffgitter	Einspeiseanlage	in Fassade Ost	24 h - 100%	23,8	10			3,0	7	78,0	78,0	
BGMKOA ILZuluftgitter 1	Einspeiseanlage	in Fassade Ost	24 h - 100%	22,8	10			3,0	78	78,0	78,0	
BGMKOA ILZuluftgitter 2	Einspeiseanlage	in Fassade Ost	24 h - 100%	22,8	17			3,0	7	78,0	78,0	
BGSW-Abluftventilator	Einspeiseanlage	in Fassade Süd	24 h - 100%	23,8	1			3,0	77	82,2	82.2	
BGSW-Dach	Einspeiseanlage		24 h - 100%	24,7	5,3	92,0	30,0	0'0	n	62,7	6'69	
BGSW-Fas. Nord	Einspeiseanlage		24 h - 100%	23,3	6'5	92,0	30,0	3,0	ep	62,7	70,4	
BGSW-Fas. Sūd	Einspeiseanlage		24 h - 100%	23,3	6,2	92,0	30,0	3,0	n	62,7	9'02	
BGSW-Fas. West	Einspeiseanlage		24 h - 100%	23,4	5,4	92,0	30,0	3,0	n	62,7	0'02	
BGSW-Fas. West, Tür	Einspeiseanlage	Stahtur geschbssen	24 h - 100%	22,8	2,0	92,0	20,02	3,0	n	72,2	75,2	
BGSW-Zuluftgitter	Einspeiseanlage	in Fassade Süd	24 h - 100%	22,8	78			3,0		77.7	17.77	
Kartoffeliager 1 - Lüffungskulsse 1		in Fassade Süd Karloffellagerhalle	24 h - 100%	25,4	5,8			3,0		80,4	0'88	
Kartoffellager 1 - Lüffungskulsse 2	Kartoffelager	in Fassade Süd Karbffellagemalle	24 h - 100%	25,4	5,8			3,0		80,4	0'88	V. V.
Kartoffellager 2 - Lüffungskulisse 1	Kartoffelliger	in Fassade Süd Kartoffellagerhalle	24 h - 100%	25,4	5,8			3,0		80,4	0'88	
Kartoffellager 2 - Lúftungskulisse 2	Kartoffelager	in Fassade Süd Kartoffellagemälle	24 h - 100%	25,4	5,8			3,0		80,4	0'88	
Kartoffeliager 3 - Lüffungskulisse 1	Kartoffelbger	in Fassade Süd Karbíféllagerhalle	24 h - 100%	25,4	5,8			3,0		80,4	0'88	
Kartoffellager 3 - Lüffungskulisse 2	Kartoffelager	in Fassade Süd Karloffellagemalle	24 h - 100%	25,4	5,8			3,0		80,4	0'88	. V
Kartoffellager 4 - Lüffungskulkse 1	Kartoffelliger	in Fassade Süd Kartoffellagemalle	24 h - 100%	25,4	8,8			3,0		80,4	0,88	

Geräuschquellen und Emissionsdaten Situation Regelbetrieb mit Maisemte

Name	Gruppe	Kommentar	Tagesgang		10000	ם	R.W.			<u> </u>		LwMax
Kartoffellager 4 - Lüffungskullsse	Kartoffelager	in Fassade Süd Kerteffellanerhalle	24 h - 100%	25,4	5,8	B	8	3,0	8 8	80,4	88,0	(A)B
Lkw/Fz Fahrspur Kartoffeliagerhalle	Kartoffelager	20 Kfz tags	6-22 Uhr - 20 Kfz	21,7	647,9			0,0		63,0	1,16	104,0
Teleskoplader Verladung Kartoffelbger	Kartoffelliger	20 Kfz a 15 Minuten	6-22 Uhr - 300 Minuten	21,9	1,7291			0,0	22	74,1	107,0	111,0
IFz Abkippen Maisernte	Maisernte	100 Kfz lags	7-21 Uhr - 100 Kfz	21,7	3390,8			0'0	41	52,1	87,4	107,3
IFz Fahrspur Maisernte	Maisernte	100 Kfz lags	7-21 Uhr - 100 Kfz	21,8	301,3			0'0		63,0	87.8	104,0
Fz Stellgeräusch Waage Maisernte	Maisernte	100 Kfz tags	7-21 Uhr - 100 Kfz	21,6	67,2			0,0		66,5	84,8	104,0
Schlepper Verdichten Silage Maisernte	Malsernte	100 Kfz tags	7-21 Uhr - 100 %	21,7	3390,8			0,0	(7)	71.7	107,0	111,0

Anhang 6: Berechnung der Geräuschimmissionen - Situation Regelbetrieb mit Maisernte

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Tegende		
Quelle		Quelname
N.	dB(A)	Schallestungspegel der Schallquelle
S	E	Mittlere Entfemung Schallqueile - Immissionsort
LoderS	II.III.	Größe der Queile (Länge oder Fläche)
200	뜅	Zuschlag für gerichtete Abstrahlung
Adiv	땅	Mittlere Dämpfung aufgrund geometrischer Ausbreitung
Agr	뜅	Mittlere Dämpfung aufgrund Bodeneffekt
Abar	铝	Mittlere Dampfung aufgrund Abschirmung
Aatm	号	Mittiere Dämprung aufgrund Luftabsorption
P	쁑	Mittiere Richtwirkungskoneitur
diref	dB(A)	Pegelentithung durch Reflexionen
8	dB(A)	Unbewerteter Schalldruck am Immissionsort Ls=Lw+Ko+ADI+Adiv+Agr+Abar+Aatm+dLreff
Cmet,T	명	Meteorologische Korrektur tags
Cmet,N	8	Metsonologische Korrektur nachts
dLw.T	8	Korrektur Betriebszeiten taos
dLw,N	8	Korrektur Betnebszeiten nachts
K	8	Zuschlag für Tageszeiten mit erhöhter Empfindlichkeit (Anteil)
5	dB(A)	Beurteilungspegel Tag
3	dB(A)	Beurteilungspegel Nacht

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Quelle	LW	υ	loder S	2	Adiv	Agr	Abar	Astm	AD	dLref	9	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	5	2
	dB(A)	ш	m,m²	뛰	B	帘	甲	명	B	dB(A)	dB(A)	8	B	田	B	명	dB(A)	dB(A)
IO-Nr. 01 Edith-Stein-Ring 37 RW,T 55 dB(A)		RW.N 40	0 dB(A)	LITE	33 dB(A)	-	LrN 30 d	dB(A)										
BHKW Containeranlage (Fabrikat 2G)	98'0	8,006		0	1.07-	4.6	3.8	-2,9	0'0	0'0	19,8	-3,2	47		0,0	1,9	18,5	18,1
Kartoffellager 4 - Lüftungskulisse 2	88,0	804,0	5,8	6,0	1,89	4,6	-0,2	-30	0'0	1,0	18,2	5	17	0,0	0'0	6.	17,0	16,5
BGHVA 2-Fas. West, Tür	90'6	763,6	3,5	6,0	88.6	4,7	4,1	-12	0,0	0,0		32	100		0,0	6.	16,7	16,3
Biomethanaufbereitung	91,0	881,2		3,0	8'88-	47	0,0	-1,7	0'0	0'0	17,71	33	-1,8	0'0	0,0	6	16,4	16,0
Gärrestfrocknungsanlage Regenis GT	93,0	997,5	114,7	3.0	-71,0	47	-0,8	-1,9	0'0	0'0	17,6	-3.3	-1,8	0'0	0,0	1,9	16,2	15,8
Kartoffellager 4 - Lüftungskulisse 1	88,0	7,708	8,3	6,0	199	4,6	-0,2	-30	0.0	0,3	17,5	5	-1,7	0,0	0'0	1,9	16,3	15,8
Kartoffellager 3 - Lüffungskulisse 2	88,0	811,3	5,8	6,0	-69,2	4,6	-0,2	-3,0	0.0	0'0	17,1	7	1,7		0,0	1,9	15,9	15,4
Kartoffellager 3 - Lüftungskulisse 1	88,0	815,0	8,3	6,0	-69,2	4,6	-0,2	-3,0	0'0	0'0	17,0	-	47	0,0	0,0	1,9	15,9	15,3
Kartoffellager 2 - Lüftungskulisse 1	88,0	822,4	5,8	0'9	-89,3	4,6	-0,1	-3,0	0'0	0'0	17,0	57	47		0,0	1,9	15,8	15,3
Kartoffellager 2 - Lüftungskulisse 2	88,0	818,7	5,8	6,0	-69,3	4.6	-0,2	-30	0,0	0,0	17,0	- 5	-1,7		0,0	1,9	15,8	15,3
Kartoffellager 1 - Lüftungskulisse 2	88,0	826,2	5,8	6,0	-89,3	4.6	-0,1	-30	0,0	0,0	17,0	·7	1,7	0'0	0,0	6.	15,8	15,3
Kartoffellager 1 - Lüftungskulisse 1	88,0	830,0	8,3	6,0	-89,4	4.6	-0,2	-30	0'0	0'0	16,8	19	1,7		0,0	6,	15,7	15,1
BGHVA 2-Abluft Ventilator	84,3	761,6		6,0	9'89-	4,6	-0,2	1,5	0'0	0'0	15,4	-3,2	-1,7	0'0	0,0	1,9	14,2	13,7
BGHVA 2-Zuluftgitter	88,6	763,6	0,5	6,0	9'89-	47	į.	5	0,0	0,0	14,7	33	4,8		0,0	1,9	13,4	13,0
BGHVA 2 Luftkühler Ventilator	84,3	759,0		3,0	9'89-	4,6	-1,0	100	0.0	2,4	14.0	7	-1,7	0'0	0,0	1,9	12,8	12,3
Gärrestfrocknungsanlage Regenis GT	93,0	890,3	142,0	3,0	-70,0	4,7	-56	-1,7	0'0	0.0	14,0	-33	8. T		0,0	1,9	12,7	12,2
BGHVA 1 Luftkühler Ventilator	84,3	762,2		3,0	-88,6	4,6	-1,5	-1,5	0'0	2,7	13,8	5,4	47	0'0	0,0	6,1	12,6	12,1
BGHVA 1-Abluft Ventilator	84,3	764,6		6,0	-68,7	4,6	-1,8	1,5	0,0	0,0	13,7	-3,2	1,7	0,0	0,0	1,9	12,5	12,0
Dachlüffer 1 Annahmebehälter	85,0	895,5		3,0	-70,0	4.6	0,0	+,0	0,0	0,0	13,3	er er	1,7	0,0	0,0	4.9	12,1	11,6
Dachlüffer 1 Lagerbehälter IV	85,0	911,0		3,0	-70,2	99	0,0	9	0'0	0'0	13,1	7	-1,7	0'0	0,0	6	11,9	11,4
Dachlüffer 2 Annahmebehälter	85,0	6'668		3,0	-70,1	4,6	-0,2	-0,1	0'0	0'0	13,1	Ę.	-1,7	0'0	0,0	1,9	11,9	11,4
Dachlüffer 1 Fermenter I	85,0	912,2		3,0	-70,2	4,6	0,0	1,0	0,0	0,0	13,1	er er	-1,7	0.0	0'0	1,9	11,9	11,4
Dachlüffer 1 Fermenter III	85,0	918,2		3,0	-70,3	4,6	0'0	-0,1	0'0	0'0	13,0	ņ	1,7	0'0	0'0	6,1	11,8	11,3
Dachlüfter 2 Fermenter I	85,0	922,3		3,0	-70,3	4,6	0,0	-0,1	0'0	0,0	13,0	7	1,7	0,0	0,0	1,9	11,8	11,3
Dachüffer 1 Nachgärer	85,0	922,3		3,0	-70,3	4.6	-0,2	-0.1	0'0	0,0	12,8	67	47	0'0	0,0	1,9	11,6	11,1
Dachlüffer 1 Nachgärer II	85,0	940,0		3,0	5'02-	4.6	0,0	-0,1	0'0	0,0	12,8	£,	-1,7	0'0	0'0	1,9	11,6	11,1
Dachlüffer 1 Fermenter II	85,0	937,7		3,0	-70,4	4,6	0'0	1,0	0,0	0,0	12,8	÷	1,7		0,0	1.9	11,6	11,1
Dachlüfter 1 Fermenter IV	85,0	962,1		3,0	7,07-	99	0,0	-0,1	0'0	0'0	12,6	5	1,7	0'0	0,0	6,1	4,1	10,9
Dachlüffer 1 Lagerbehälter II	85,0	9,986		3,0	-70,9	4,6	0.0	0,1	0'0	0'0	12,4	-3,2	-1,7		0,0	1,9	11,2	10,7
Dachlüffer 1 Lagerbehälter III	85,0	8,066		0	-70,9	4.6	0.0	10	0.0	0.0	12.4	32	-1,7		0.0	1.9	11.1	10.7

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Ouelle	N.	(7)	loder S	2	Adiv	Agr	Abar	Astm	ADI	dLref	গ্ৰ	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	5	3
	dB(A)	ш	m,m²	땅	용	뛰	畏	땅	8	dB(A)	dB(A)	용	쁑	쁑	용	뜅	dB(A)	dB(A)
Dachlüffer 2 Annahmebehälter	85,0	1017,		3,0	71.1	4,6	0,0	-0,1	0'0	0'0	12,1	-3,2	-17	0'0	0,0	1,9	10,9	10,4
Dachlüffer 1 Lagerbehälter	85,0	964,9		3,0	7,07-	4,6	-0,5	-0,1	0'0	0'0	12,1	F.	-4,7	0'0	0,0	1,9	10,9	10,4
Dachlüfter 2 Fermenter I	85,0	1002,		3,0	-71,0	4.6	-0,2	-0,1	0,0	0,0	12,1	-32	4,7	0,0	0,0	-9	10,9	10,4
Dachlüfer 1 Annahmebehälter	85,0	1003,		3,0	-71,0	4,6	-0,2	-0,1	0'0	0'0	12,1	-32	-4,7	0,0	0'0	1.9	10,9	10,4
Dachlüfter 1 Lagerbehälter I	85,0	1023,		3,0	-71,2	4,6	0,0	-0,1	0'0	0'0	12,1	32	17	0'0	0,0	1,9	10,8	10,4
Dachlüffer 2 Nachgärer I	85,0	1023,		3,0	-71,2	4,6	0,0	-0,1	0'0	0'0	12,0	32	-4.7	0'0	0'0	6.	10,8	10,3
Dachlüfter 2 Fermenter IV	85,0	978,9			-70,8	4,6	-0,5	0,1		0'0	12,0	E.	1,7	0'0	0,0	1,9	10,8	10,3
Feststoffeintrag mit Flüssigfuttereinheit II	95,0	922,7	30,2		-70,3	47	0,0	38		0,0	19,4	-33	1,00	-7,8	-7,8		10,3	9,9
BGHVA 1 Luftkühler Lamellen	83,9	762,2		3,0	9'89-	4,7	-6.5	1,5	0.0	5,0	10,7	32	4,7	0.0	0,0	6,	9,4	9,0
Dachlüfter 2 Fermenter III	85,0	942,7			-70,5	4,6	-23	-0,1		0'0	10,5	ę.	-1,7	0,0	0,0		9,3	8,8
Dachlüfter 1 Fermenter I	85,0	1002,		3,0	-71,0	4.6	00. T	1,0	0,0	0,0	10,5	-32	-1,7	0'0	0,0	9	9,3	8,8
BGHVA 2 Luffkühler Lamellen	83,9	759,0		3,0	9'89-	47	-6,7	5	0.0	4,9	10,4	-32	1,7	0,0	0'0	1,9	9,1	8,6
BHKW-Fas. Sūd; Tür	82,3	976,0	6,3	6,0	-70,8	4,7	6	-3,0	0'0	0,0	2'6	33	1,8	0.0	0'0	6,	8,4	8,0
BGMKOA I-Zulufigitter 1	78,0	760,0		6,0	-68,6	4,7	0,0	1.55	0'0	0,0	9,3	-3,2	1,8	0,0	0,0	1,9	8,0	7,5
BGHVA 2-Abluft passiv	78,0	761,1		6,0	-88,6	4.6	-0,2	-1,5	0'0	0'0	6	-32	47	0'0	0,0	1,9	7,9	7,4
Dachlütter 2 Lagerbehälter IV	85,0	947,7		3,0	-70,5	4,6	4,2	-0,1	0'0	0,0	9'8	13.1	-1,7	0'0	0'0	6.	7,4	6,9
BGSW-Abluftventilator	82,2	791,2		6,0	0'89	4,6	4,6	-1,5	0,0	0,0	8,5	32	1,7	0'0	0,0	6.	7,3	6,8
Betriebshalle-Fas. Süd; Tor	80,1	983,9	20,3	6,0	6'07-	4.7	9	-20	0'0	0'0	8,5	3,2	1,8	0'0	0,0	9,	7,2	6,7
Dachlüfter 2 Nachgärer II	85,0	9,178		3,0	707-	4,6	4,2	6,1	0'0	0'0	8,4	e.	-1,7	0'0	0,0	1,9	1,1	9'9
BGMKOA LAbluffgitter	78,0	759,2		6,0	9'89-	4,6	-12	5	0,0	0,0	00	32	-1,7	0.0	0,0	1,9	8,8	6,4
Feststoffeintrag mit Flüssigfuttereinheit	95,0	923,6	28,7	3,0	-70,3	4,7	4,4	-27	0.0	0'0	15,9	333	-1,8	-7,8	-7,8	6,	6,8	6,4
BGHVA 1-Abluft passiv	78,0	764,1		6,0	-88,7	4,6	-1,6	50	0.0	0'0	9'2	-3,2	1,7	0.0	0.0	1,9	6,4	5,9
Dachlüfter 2 Fermenter II	85,0	946,1		3,0	-70,5	4.6	-5,2	-0,1	0'0	0'0	9,7	57	47	0'0	0,0	6,1	6,4	5,9
Dachlüfter 2 Lagerbehälter II	85,0	1020,		3,0	-71,2	9	4,7	-0,1	0'0	0'0	7,4	-3,2	1,7	0'0	0,0	9,	6,2	5,7
BGMKOA LZuluftgitter 2	78,0	758,7		6,0	9'89-	4,7	6	5	0.0	0'0	7,4	32	7,00	0'0	0,0	6	6,1	5,8

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Ouelle	M	(7)	loder S	2	Adiv	Agr	Abar	Aatm	ADI	dLrefl	2	Cmet,T	Cmet,T Cmet,N	d_w,T	d_w,N	ZR	5	E
	dB(A)	ш	т,т.	뛰	贸	铝	畏	뛰	贸	dB(A)	dB(A)	g	뛰	畏	쁑	8	dB(A)	dB(A)
Dachüffer 2 Nachgärer	85,0	949,0		3,0	5'02-	4.6	9,5	-0,1	0,0	0,0	7,2	33	1.1	0'0	0,0	1,9	6,0	5,5
Dachlüfter 2 Lagerbehälter	85,0	989,2		3,0	8'02-	4.6	-5.7	-0,1	0,0	0,0	6,7	3,2	7,1-	0'0	0,0	9	5,5	5,0
Dachlüffer 2 Lagerbehälter III	85,0	1025, 6		3,0	-71,2	4,6	55	1,0-	0.0	0,0	9'9	33	4	0'0	0'0	6,	5,3	4,8
Dachlüfter 1 Nachgärer I	85,0	1020,		3,0	-71,2	4,6	5.6	-0,1	0'0	0'0	6,5	32	47	0'0	0,0	co,	5,2	4,7
BGHVA 1-Fas, Ost, Tür	90'6	769,1	3,5	6,0	-68,7	4.7	-17,9	1,4	0.0	0'0	4,0	32	1,00	0'0	0,0	1,9	2,7	2,2
Dachlüfter 2 Lagerbehälter I	85,0	1042,		3,0	-71,4	4.6	50	-0,1	0'0	0'0	2,4	-3,2	-4.7	0'0	0'0	6.	1,2	0,7
BGSW-Zuluftgitter	7,77	791,2		6,0	0,08	47	63	-1,5	0'0	0'0	2,3	3,2	6	0'0	0'0	1,9	1,0	9'0
Sticksbffeinheit Wärmespeicher	80,0	899,5		3,0	-70,1	4.7	-0,1	-5,9	0.0	0,0	2,2	-33	7	0.0	0.0	1,9	8,0	0,4
BGSW-Fas. West, Tür	75,2	7,167	2,0	6,0	-89,0		4.6	-1,3	0.0	0,0	9	32	7,1	0,0	0,0	φ. +	0,4	1,0
Feststoffeintrag mit Flüssigfuttereinheit I	95,0	1017,	28,7	3,0	-71,1	1,4	-10,6	-25	0'0	0'0	6	333	1,8	8,7-	8'2-	6.	0,0	-0,5
Betriebshalle-Dach	73,8	9'686	223,4	3,0	-70,9	4,6	-0,3	9'0-	0'0	0'0	0,4	m	-1,7	0'0	0,0	1,9	-0,7	-12
BGHVA 1-Zulufigitter	88,6	769,2	0,5	6,0	-68,7	4.7	-19,7	5	0.0	0,0	0,0	-33	00	0,0	0,0	1,9	5,1	-1,8
BGSW-Fas, West	70,0	7,167	5,4	6,0	-69,0	4.7	-1.9		0.0	0,0	-0,7	32	4,7	0'0	0,0	1,9	-1,9	-24
BGSW-Fas. Sūd	70,6	791,2	6,2	0'9	-89,0	4.7	ej	17	0.0	0.0	1,4	-3,2	1,7	0,0	0,0	1,9	-27	-3,2
BGSW-Dach	6,69	792,2	5,3	3,0	-89,0	4.6	-0,3	-13	0'0	0'0	-22	3.1	47	0'0	0,0	6,1	-34	-3,9
Betriebshale-Fas. Süd	67.7	984,5	54,8	6,0	8'R-	4,6	-0,1	9'0-	0,0	0,0	-25	-3,2	4,7	0,0	0,0	B.	-3,8	4.3
BGHVA 2-Fas. West	66,5	763,5	30,1	6,0	88.6	4.6	-1,6	-1,0	0,0	0,0	-33	3.3	1,7	0,0	0,0	6,1	4,5	-50
Rührwerk Fermenter III	79,0	915,0	C. Company	3,0	-70,2	4.6	0,0	-6,0	0'0	0'0	1,1	3,2	1,7	4,00	¥.	60,	4.9	-54
BGHVA 2Fas. Sūd	65,2	761,8	22,6	6,0	-68,6	4,6	9'0-	-1,0	0'0	0'0	96	32	-1,7	0,0	0,0	1,9	4.9	-5,4
BGHVA 1Fas. West	67.0	788,5	34,1	6,0	-88,7	4,6	4.4	-1,0	0.0	6,4	-3,7	13	-1,7	0,0	0'0	1,9	-50	-5,4
BGHVA 1-Dach	67,2	767,8	35,2	3,0	-68,7	4,6	-0,2	-	0'0	0'0	4.4	7	1,7	0,0	0,0	6,1	ry S	19
BGHVA 2-Dach	67,2	764,9	35,2	3,0	-68,7	4,6	-03	Ŧ	0'0	0'0	4,4	5	117	0,0	0,0	1,9	-56	4
BGHVA 2-Fas. Ost	67,0	766,1	33,7	6,0	-88,7	4.6	-11.9	-0,9	0'0	8,5	4.6	13.	47	0'0	0,0	6,1	-5,8	6,3
BGHVA 1-Fas, Sūd	85,2	764,8	22,6	6,0	-68,7	4,6	-1,8	-1.0	0'0	0,0	4.8	5,5	11	0,0	0,0	6,4	6,0	99
Betriebshale-Fas. Ost	71,2	994,5	124,0	6,0	6'02-	4.6	-8,5	-0,3	0,0	0,0	47	7	1,7	0,0	0,0	6.	-6,4	-6,8
Gemis chkühler BHKW 1	87,0	971,9		3,0	7,07-	4.7	-17,5	-26	0'0	0'0	25.	33	1,00	0,0	0,0	6	69-	-7,3
Rührwerk Fermenter IV	79,0	964,0		3,0	707-	4,6	-28	15	0'0	0'0	-1,2	-3,2	-1,7	4,8	4,8	1,9	-7,2	1.7-
BGMKOA ILAbluffgitter	78,0	773,8			8,88-	4.6	-15,1	5	0.0	0,0	909	32	1,7	0,0	0,0	1,9	-7,3	-7,8

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisernte

65.0 972.3 65.0 972.3 65.0 976.8 65.0 976.8 78.0 773.1 78.0 773.1 70.4 793.3 69.6 995.5 66.4 769.1 70.0 984.5 66.4 769.1 70.0 984.5 70.0 984.5 70.0 982.2 79.0 927.9 79.0 952.2 79.0 952.2	200	dB dB	8	9	ą	7	Table of a	5000		•		ą	ą	1V/QF	1000
87.0 969.5 86.0 972.3 65.0 975.4 65.0 976.8 78.0 774.3 70.4 793.3 69.6 995.5 66.4 769.1 70.0 983.4 70.0 984.5 79.0 927.9 79.0 927.9 79.0 927.9	ത്			8	9	00	(A)(B)	(A)(B)	qB	9	田田	CO	9	2	dB(A)
86.0 972,3 65.0 975,4 65.0 976,8 78.0 773,1 70.4 793,3 69.6 995,5 69.6 995,5 70.0 984,5 79.0 927,9 79.0 927,9 79.0 927,9 79.0 927,9		7,07- 0	14.7	-18,0	-2,7	0,0	0'0	-6,1	33	9,7	0'0	0,0	1.9	-7,5	6'/-
65.0 975.4 65.0 976.8 78.0 773.1 70.6 995.5 69.6 995.5 69.6 995.5 79.0 983.1 79.0 983.1 79.0 983.1 79.0 982.2 79.0 952.2 79.0 952.2	લ્કો	7,07- 0	14.7	-18,6	4,0	0'0	2,1	6'8	33	60,	0'0	0,0	6	-8,2	-8,6
65.0 976.8 78.0 774.3 78.0 773.1 70.4 793.3 69.6 995.5 66.4 769.1 70.0 984.5 79.0 927.9 79.0 952.2 79.0 952.2 79.0 952.2 79.0 952.2	0,5 6,	0 -70,8	4,6	-0,1	-2,5	0'0	0'0	-7,0	-3,2	-1,7	0'0	0.0	1,9	-83	-8,8
78.0 774.3 78.0 773.1 70.4 793.3 69.6 995.5 66.4 769.1 70.0 984.5 80.0 949.2 79.0 927.9 79.0 952.2 79.0 952.2 79.0 952.2	1,0 6,0	0 -70,8	4	-0,1	-25	0,0	0,0	0'2-	-3,2	-1,7	0.0	0.0	1,9	တို	89
78.0 773.1 70.4 793.3 69.6 995.5 66.4 769.1 70.0 984.5 80.0 949.2 79.0 927.9 79.0 952.2 79.0 1013.	9	0 -68,8	4,7	-17,3	5	0'0	0'0	-8,2	32	7,00	0,0	0'0	1,9	9,5	-10,0
70,4 793,3 69,6 995,5 66,4 769,1 70,0 984,5 79,0 927,9 79,0 952,2 79,0 952,2 79,0 952,2 79,0 952,2 79,0 952,2 79,0 952,2 79,0 952,2	6,0	8,89- 0	47	-17,3	5	0,0	0'0	-8,2	-3,2	1,8 1,8	0,0	0,0	1,9	-9,5	-10,0
69,6 995,5 66,4 769,1 70,0 983,1 70,0 984,5 80,0 949,2 79,0 952,2 79,0 952,2 79,0 1013, 6 53,2 772,8		0,68-0	47	-12,3	-0,9	0'0	0'0	-10,5	-3,2	17	0'0	0,0	1,9	-11.7	-12,2
66,4 769,1 70,0 983,1 70,0 984,5 80,0 949,2 79,0 952,2 79,0 952,2 79,0 952,2 79,0 952,2 79,0 953,2 79,0 953,2	9	0,17-0	4.6	-10,4	-0,3	0,0	0,0	-10,6	-3,2	17	0,0	0'0	1.9	-11,9	-12,4
70,0 983,1 70,0 984,5 80,0 949,2 79,0 952,2 79,0 952,2 79,0 6 53,2 769,8 53,2 769,8	6	0 -88,7	4.6	-13,1	6'0-	0,0	0,0	-14,9	13.1	1,7	0,0	0,0	6.	118,1	-16,6
70,0 984,5 80,0 949,2 79,0 927,9 79,0 952,2 79,0 1013, 63,2 769,8 53,2 769,8		0 -70,8	F.	-16,1	-1,0	0'0	0'0	-16,6	-3,2	7,1-	0,0	0,0	6	-17,8	-18,3
80,0 949,2 79,0 927,9 79,0 952,2 79,0 1013, 6 53,2 769,8 53,2 772,8	9	6'02-0	4,6	-16,1	-1,0	0'0	0'0	-16,6	-3,2	-1,7	0'0	0,0	1,9	-17,8	-18,3
79,0 927,9 79,0 952,2 79,0 6 53,2 769,8 53,2 772,8	m	0 -70,5	47	-19,6	-5,6	0,0	0,0	-17,4	-333	0 0	0,0	0,0	1,9	-18,8	-19,2
79,0 952,2 79,0 6 53,2 789,8 53,2 772,8		0 -70,3	4	-19,4	4,8	0,0	0'0	-17,2	32	7,7	80	4,8	6,1	-23,2	23,7
79,0 1013, 6 53,2 772,8 53,2 772,8	er	9,07- 0	4,6	-19,5	-5,0	0.0	0'0	17,7	-3,2	1,7	4,8	4.8	1,9	-23,8	-24,2
53,2 769,8 53,2 772,8	ෆ්	0 -71,1	4.6	-19,5	5,3	0,0	0,0	00 00 00	32	-1,7	4	4.8	4.9	-24,5	-25,0
53,2 772,8	2,0 6,	0 -88,7	47	-16,1	-1,3	0,0	0,0	31,6	-3,2	700	0.0	0'0	1,9	-32,9	-33,3
C P C P C C C C	2,0 6,	8,88- 0	4.7	-16,9	-13	0'0	0'0	-32,5	-32	7	0,0	0,0	1,9	-33,8	34,3
BGHVA 2, E-Raum-ras, west 25,9 767,6 10,6	6	0 -68,7	4.6	-2.5	-1,0	0'0	0'0	43,8	5	-1.7	0,0	0,0	1,9	145,1	45,6
BGHVA 2, E-Raum-Dach 27,2 768,9 11,2	m	0 -68,7	4.6	-0,2	-1,0	0'0	0'0	-44,3	5	47	0,0	0,0	1,9	45,5	46,0
BGHVA 1, E-Raum-Dach 27,2 771,8 11,2	ന	0 -68,7	4.6	-0,2	1,1-	0,0	0,0	44,4	£.	1,7	0,0	0'0	1,9	-45,5	148,0
BGHVA 2, E-Raum-Fas. Ost 27,0 770,2 10,8	6	0 -88,7	4.6	-13,4	-0,9	0,0	5,8	48,9	7	1,7	0'0	0,0	6.	5,	-50,6
BGHVA 1, E-Raum-Fas. West 26,9 770,6 10,6		0 -88,7	9	-10,8	6'0-	0'0	2,5	49,6	7	1,7	0,0	0,0	6,	-50,8	-51,3
BGHVA 1, E-Raum-Fas. Nord 29,9 772,8 21,1	1,1 6,0	8,89- 0	4,6	-11,6	6'0	0'0	0'0	48,9	ल	-1,7	0'0	0,0	1,9	17	-51,6
BGHVA 2, E-Raum-Fas, Nord 29,9 769,9 21,1	w	0 -88,7	4.6	-12,8	60-	0,0	0,0	51,1	67	1,7	0,0	0,0	1,9	-52,3	-52,8
BGHVA 1, E-Raum-Fas. Ost 27,0 773,2 10,8	9	0 -68,8	4.6	-13,3	6,0-	0,0	9'0	54.1	7	-1,7	0'0	0,0	1,9	58,3	-55,8
Schlepper Verdichten Silage Maisernte 107,0 948,1 3390,8	m	0 -70,5	4.7	-0,5	-3.7	0,0	0,2	30,9	-33	60 17	9'0-		8'0	27,8	
Teleskoptsder Verladung Kartoffelager 107,0 835,3 1927,7	27,7 3,	69,4	47	127	-32	0'0	5,1	28,5	-33	F .	19		6,1	22,1	
Radiader Beschickung Anlage 107,0 964,7 4882,2	82,2 3,	7,07- 0	4,7	-0,5	-3,7	0,0	0,4	30,8	-3,3	1,8	-9,0		6.	20,4	
Radiader Beschickung Anlage 107,0 924,9 4758,7	eri	0 -70,3	4,7	-1,4	-3,7	0,0	0,0	29,9	-33	00	-9,0		6,	19,6	
Fz Abkippen Maisernte 87,4 948,1 3390,8	es.	0 -70,5	14.7	-0,5	-3,2	0'0	0,2	11,8	33	-1 8	8,0		8,0	17,3	

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Coeffe	N	(7)	oder S	2	Adiv	Agr	Abar	Abar Aatm	ADI	dLref	9	Cmet,T	Cmet,N	d.w.T	d_w,N	ZK	5	3
	dB(A)	ш	m,m²	뛰	B	帘	甲	명	B	dB(A)	dB(A)	8	명	8	B	명	dB(A)	dB(A)
iO-Nr. 02 Pater-Augustin-Straße RW,T 55 dB(A	55 dB(A	, RW	N 40 GB(A		LrT 33 d	dB(A)	LM3	30 dB(A	0							1 5		
BHKW Containeranlage (Fabrikat 2G)	98'0	926,1		3,0	-70,3	4.7	-0.7	-3,9	0'0		21,4	-3,2	47	0,0	0,0	1,9	20,1	
BGHVA 2-Fas. West, Tür	90'6	761,3		6,0	-68,6	4,7	133	1,5	0,0	0,0	20,5	32	1,8	0,0	0,0	Ð.	19,2	18,7
BGHVA 2-Zulufigiter	88,6	761,3	0,5	6,0	-88,6	4,7	-21	5	0,0	0,0	17,71	33	100	0,0	0,0	8	16,4	16,0
Biomethanaufbereitung	91,0	939,9		3,0	-70,5	A.7	0'0	60/1-	0'0	0'0	17,0	-33	8,1-	0'0	0,0	9	15,7	15,3
Kartoffellager 4 - Lüftungskulisse 2	88,0	822,5		6,0	8,3	4,6	-0,1	-3.0	0'0	0'0	16,9	Ę.	-1,7	0,0	0,0	1,9	15,8	15,2
Kartoffellager 4 - Lüffungskulisse 1	88,0	827,4	5,8	6,0	-88,3	4,6	10	-3.0	0.0	0,0	16,9	13.4	-1,7	0,0	0,0	1,9	15,7	15,2
Kartoffellager 3 - Lüffungskulisse 2	88,0	832,3	5,8	6,0	-69,4	4.6	-0,1	-3,0	0'0	0'0	16,8	5	1,7	0,0	0,0	6,	15,6	15,1
Kartoffellager 3 - Lüftungskulisse 1	88,0	837,3	8,3	6,0	-89,4	4,6	-0,	-30	0'0	0,0	16,7	5	-1,7	0,0	0,0	1,9	15,6	15,1
Kartoffellager 2 - Lüftungskulisse 2	88,0	842,2	5,8	6,0	-89,5	4.6	-0,1	5,		0'0	16,7	3.1	47	0,0	0,0	6.	15,5	15,0
Kartoffellager 2 - Lüftungskulisse 1	88,0	847,2	5,8	6,0	9'69-	4,6	-0,1	43	0'0	0,0	16,6	- 67	17	0,0	0,0	6.	15,4	14,9
Kartoffellager 1 - Lüftungskulisse 2	88,0	852,1	5,8	6,0	89.68	4.6	-0,1	07	0,0	0,0	16,6	13.1	1,7	0'0	0,0	6	15,4	14,9
Kartoffellager 1 - Lüftungskulisse 1	88,0	857,1		6,0	-89,7	F. 6	1,0	13	0'0	0'0	16,5	5	1,7	0'0	0,0	9	15,3	14,8
Gärresttrocknungsanlage Regenis GT	93,0	1040,	114,7	3,0	-71,3	4,7	-1.6	-20	0,0	0,0	16,4	53	7	0,0	0,0	4.	15,0	14,6
Garrestrocknungsanlage Regenis GT	93,0	915,3	142,0	3,0	-70,2	4,7	-36	00	0'0	0,0	15,7	233	1.8	0.0	0,0	6.	14,4	14,0
BGHVA 1-Zuluftgitter	88,6	769,4	9'0	6,0	-88,7	4,7	-19,5	100	0,0	15,4	15,6	33	100	0,0	0,0	- 3	14,3	13,9
BGHVA 2-Abluft Ventilator	84,3	760,7		6,0	9,88-	4,7	0,0	1,55	0'0	0,0	15,6	3,2	1,7	0'0	0,0	0	14,3	13,8
BGSW-Abluffventilator	82,2	791,2			0,00	4,7	-0,2	-1,5	0'0	2,3	15,1	32	-1,7	0,0	0,0	1,9	13,9	13,4
BGHVA 1-Fas. Ost, Tür	90'6	769,4	(C)	6,0	188,7	47	-17,0	4,1-	0,0	10,1	14,9	-3,2	7	0.0	0,0	1.9	13,6	13,2
BGHVA 1 Luftkühler Ventilator	84,3	763,5		3,0	988	4,6	28	172	0'0	4,0	13,7	5	7,17	0'0	0,0	6	12,5	12,0
BGHVA 1-Abluft Ventilator	84,3	765,0		6,0	-68,7	4.7	-1,8	-15	0'0	0'0	13,7	-3,2	1,7	0,0	0,0	1,9	12,5	12,0
Dachlüffer 1 Annahmebehälter	85,0	915,5		3,0	-70,2	4,6	0,0	-0.1	0'0	0'0	13,0	13.	47	0'0	0,0	1.9	11,8	11,3
Dachlütter 2 Annahmebehätter	85,0	923,4			-70,3	4,6	0'0	-0,1	0'0	0,0	12,9	5	1,7	0,0	0,0	6.	11,7	11,2
Dachlüfter 1 Fermenter I	85,0	927,0		3,0	-70,3	4.6	0'0	9	0,0	0,0	12,9	14	1,7	0,0	0,0	6 .	11,7	11,2
Dachüffer 1 Nachgärer	85,0	945,1		3,0	-70,5	F.6	0,0	-0,1	0'0	0'0	12,7	13.	1,7	0,0	0,0	9	11,5	11,0
Dachlüfter 1 Fermenter II	85,0	947,2			-70,5	4,6	0,0	-0,1	0'0	0,0	12,7	÷ m	-1,7	0'0	0,0	1,9	11,5	11,0
BGHVA 1 Luffkühler Lamellen	83,9	763,5			9'89-	4,7	45	9	0,0	5,1	12,7	32	1,7	0,0	0,0	1,9	11.4	10,9
Dachlüfter 1 Fermenter III	85,0	983,4		3,0	-70,8	4,6		-0,1	0.0	0.0	12,4	32	117	0'0	0,0	6	11,2	10,7
Dachlüffer 1 Lagerbehälter IV	85.0	994,9		3,0	-70.9	4.6	0.0	-0.1	0.0	0.0	12,3	-3.2	-1.7	0.0	0.0	1.9	111	10.6

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Ouelle	LW	(V)	l oder S	Š	Adiv	Agr	Abar	Aatm	ADI	dLref	S	Cmet,T	Cmet,N	₫.w.T	dLw,N	ZR	151	NJ.
	dB(A)	Ш	m,m²	gp	B	铝	甲	8	B	dB(A)	dB(A)	GB	명	8	母	8	dB(A)	dB(A)
Dachlüfter 1 Nachgärer II	85,0	1013,		3,0	-71,1	4,6	0,0	1,0	0'0	0'0	12,1	32	171-	0'0	0,0	1,9	10,9	10,4
Dachlüfter 1 Fermenter IV	85,0	1026,		3,0	-71,2	4,6	0,0	5	0'0	0'0	12,0	3,2	4,7	0'0	0'0	6.	10,8	10,3
Dachlüffer 1 Annahmebehälter	85,0	1031,		3,0	-71,3	4,6	-0,1	-0,1	0'0	0.0	+	32	2,1	0,0	0,0	Α, Qj	10,6	10,1
Dachlüfter 2 Fermenter I	85,0	1032,		3,0	-71,3	9	-0,1	-0,1	0'0	0'0	11,8	-3,2	1,7	0'0	0'0	9,	10,6	10,1
Dachlüfter 1 Lagerbehälter	85,0	8,77,8		3,0	-70,8	4,6	9'0-	-0,1	0.0	0'0	£.	Ę.	-4,7	0'0	0,0	6,4	10,6	10,1
Dachlüfter 1 Fermenter I	85,0	1039,		3,0	-71,3	4,6	1,0-	-0,1	0'0	0'0	11,8	-3,2	1,7	0'0	0'0	6 .	10,5	10,1
Dachlüffer 1 Lagerbehälter II	85,0	1043,		3,0	4,17-	4,6	-0,1	-0,1	0,0	0'0	5,	32	1,7	0,0	0'0	9,	10,5	10,0
Dachlüfter 1 Lagerbehälter III	85,0	1059,		3,0	71,5	9	0,0	-0,1	0'0	0'0	11,7	-3,2	1,7	0'0	0'0	9,6	10,5	10,0
Dachlüffer 2 Annahmebehätter	85,0	1045,		3,0	4,17	4,6	10-	-0.1	0'0	0'0	11,7	-3,2	1,7	0'0	0.0	6,1	10,5	10,0
Dachlüfter 1 Lagerbehälter I	85,0	1051,		3,0	-71,4	4.6	-0,1	0,	0,0	0,0	11,7	-3,2	-4,7	0,0	0,0	9,	10,4	10,0
BGHVA 2 Luftkühler Ventilator	84,3	758,8		3,0	9'89-	4.6	-1,3	-1,5	0'0	0'0	11,3	5	17	0'0	0,0	1,9	10,1	9'6
Dachlüfter 2 Fermenter IV	85,0	1046,		3,0	71,4	9	-1,0	1,0-	0'0	0'0	10,9	3,2	7,1-	0'0	0,0	9,	9,6	9,2
Feststoffeintrag mit Flüssigfuttereinheit II	95,0	985,1	30,2	3,0	-70,9	4,7	0,0	-3,8	0.0	0,0	18,7	33	5	-7,8	-7,8	6	9,5	9,1
BGSW-Zuluftgitter	7,77	791,2			-89.0	47	5	4	0'0	2,8	10,0	-3,2	1,8	0.0	0,0	1,9	8,7	8,3
BGHVA 2 Luftkühler Lamellen	83,9	758,9		3,0	888	4.7	-24	-15	0'0	0,0	8,6	-32	7,7	0,0	0,0	6,1		8,0
BGMKOA LAbluftgitter	78,0	754,5			-68,5	4.7	0,0	5.	0,0	0'0	9,3	32	1,7	0,0	0,0	69.		7,6
BGMKOA LZulufigitter 2	78,0	754,1		6,0	5'88	4,7	0'0	5	0,0	0,0	9,3	3,2	1,8	0'0	0,0	6.		7,8
BGHVA 2-Abluff passiv	78,0	759,9			9'89-	4,7	0.0	4,5	0'0	0'0	9,3	-3,2	1,7	0,0	0'0	6,		7,6
BGMKOA LZuluftgtter 1	78.0	755,1		6,0	-68,6	47	0.0	1,5	0'0	0'0	6,3	32	-1,8	0'0	0,0	1,9	8,0	7,6
Feststoffentrag mit Flüssigfuttereinheit	95,0	936,4	28,7		4'02-		-29	-30	0,0	0,0	17,1	-33	<u>~</u>	-7,8	-7,8	1,9		7,5
Dachlüfter 2 Fermenter III	85,0	1012,		3,0	-71.1	4,6	30	1.0-	0,0	0,0	0,	-3,2	47	0'0	0,0	6,1	6'1	7,4
		3		S.		3												

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Dachliffer (Nachcäter)		2	oder v	2	AGN	ď	ADBT	Aatm	ADI	d_re1	9	C met,	CHEL, N	FW.	-	í	ì	5
Dachiffer 1 Nachourer	dB(A)	ш	m,m²	뛰	B	明	甲	田田	B	dB(A)	dB(A)	8	명	畏	母	8	dB(A)	dB(A)
	85,0	1055,		3,0	-71,5	4,6	-28	1,0	0'0	0'0	9,0	3,2	4	0'0	0,0	1,9	1.7	7,3
BGHVA 1-Abluft passiv	78,0	764,3		0,3	-68.7	47	1,1	5,	0'0	0'0	8,1	-32	-1,7	0'0	0'0	1,9	8,8	6,4
Dachlüfter 2 Lagerbehälter IV	85,0	1036, 2		0,5		4.0	40	-0,1	0,0	0,0	7,2	-3,2	1,7	0,0	0'0	6.	5,9	5,5
Dachlüfter 2 Nachgärer II	85,0	1049,		3,0	4.17-	4,6	4,7	1,0-	0,0	0'0	1,1	-3,2	-4,7	0'0	0'0	4,9	5,9	5,4
Dachlüfter 2 Lagerbehälter II	85,0	1082,		3,0	7,17	4,6	4.5	-0,1	0'0	0'0	0'2	3,2	-17	0'0	0,0	1,9	60,5	5
Dachütter 2 Nachgärer Dachlütter 2 Fermenter I	85,0	979,5		3,0	8,02-	4,6	-5.6	1,0	0.0	0,0	6,9	£ 67	4,7	0,0	0,0	6, 6	5,6	r, 4
Dachlüfter 2 Lagerbehälter III	85,0	1099,		0	co	4,6	050	-0,1	0,0	0,0		-3,2	-1,7	0'0	0,0	6,	4,4	3,9
Dachlütter 2 Fermenter II BGSW-Fas. West, Tür	85,0	791,1	2,0	3,0	9,02-	4,6	1,3	-0,1	0,0	0,0	5,4	3.2	1,7	0,0	0,0	9, 6,	3,9	3,4
Dachlüfter 2 Nachgärer I	85,0	1064,		0,5	71,5	4,6	-7.2	-0,1	0,0	0,0	4,5	-3,2	1,7	0'0	0,0	6	3,3	2,8
Dachlüfter 2 Lagerbehälter I	85,0	1076,		3,0	-71,6	4,6	-86	1,0	0,0	0,0	3,0	-3,2	-1,7	0,0	0'0	1,9	4,8	1,3
Dachlüfter 2 Lagerbehälter	85,0	1010,		3,0	-71,1	4,6	9,6	-0°	0'0	0'0	2,6	32	1,7	0'0	0'0	1,9	1,4	6'0
BGSW-Fas. Sūd	70,6	791,3	6,2	0'9	0,69	4.7	90	-12	0,0	1,0	2,1	-32	-1,7	0,0	0,0	1,9	8,0	0,3
Gemis chkühler BHKW 1	87,0	1009, 3		3,0	71,1	4.7	E,	-20	0,0	9,0	0	-33	8,7	0,0	0'0	6,1	-0,4	8.0-
BGSW-Fas. West	70,0	791,3	5,4	6,0	0.8	47	-0.5	-12	0,0	0,0	9'0	-32	-1,7	0,0	0'0	1,9	9'0-	-1,1
Betriebshalle-Fas. Süd; Tor	80,1	1025,	20,3	6,0	-71,2	4,7	89	6,0-	0,0	0'0	5'0-	-33	60 <u>.</u>	0'0	0,0	6,1	-1,8	-23
BGSW-Dach	669	792,1	5,3	3,0	-89,0	4,7	0,0	4.1	0'0	6'0	-12	7	1,7	0'0	0,0	1,9	-24	-29
Betriebshalle-Dach	73,8	1029,	223,4	3,0	-71,2	4,6	-20	-0,3	0,0	0,0	-1,4	हर्न	1,7	0'0	0,0	6,4	-2,5	-3,0
Rührwerk Fermenter III	79,0	983,3		3,0	-70,8	4,7	0,0	-6,3	0,0	2,5	2,7	3,2	1,7	4.8	4,8	6.	-33	3,8
BGHVA 2-Fas. West	66,5	761,2	30,1		9'89-	4,7		+	0,0	0,0	-23	-3,2	1,7	0,0	0,0	6.	3.5	4,0
BGHVA 2-Fas. Sud	65,2	8,097	22,8	6,0		4,7	0,0	7	0'0	0'0	5	3,2	1,7	0'0	0,0	6	4,3	4,8

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Quelle	N.	(7)	l oder S	2	Adiv	Agr	Abar 4	Aatm	ADI	dLrefl	s]	Cmet,T	Cmet,N	d.w.T	dLw,N	ZR	扫	LIN
	dB(A)	ш	m,m²	뛰	B	界	甲	田田	B	dB(A)	dB(A)	GB	명	8	gp	8	dB(A)	dB(A)
BGHVA 2-Fas. Ost	67,0	765,0	33,7	6,0	1,887	47	-7.2	6'0-	0,0	4,9	-3,6	13.	11	0'0	0,0	1,9	4.9	-5,3
BGHVA 1-Fas. West	67,0	765,6	34,1	6,0	-88,7	4.7	43	0,1-	0'0	9,5	-3,8	57	1,7	0'0	0,0	6	9	55
BGHVA 1-Fas. Sūd	65,2	765,2	22,6	6,0	-68,7	4.7		-1,0	0'0	0'0	4,0	3,2	-4,7	0'0	0,0	1,9	-5,2	15
BGHVA 2-Dach	87,2	763,1	35,2	3,0	9'89-	4,6	-	÷	0.0	0,0	43	4	-1,7	0,0	0.0	1,9	-5.4	-6,0
BGHVA 1-Dach	67,2	767,5	35,2	3,0	-68,7	4,6	0,1	11	0.0	0.0	4.3	7	11/2	0,0	0,0	6,	-5,4	9'0
Feststoffeintrag mit Flüssigfuttereinheit I	95,0	1058, 6	28,7	3,0	-71,5	1,4	-	-27	0,0	0'0	3,1	33	1,8	-7,8	8'2-	⊕. —	90	9,5
Betriebshale-Fas. Süd	2'19	1026, 3	54,8	0'9	-71,2	4,7	2,1	9'0-	0,0	0'0	4	32	7,8	0,0	0'0	6	<u>6</u>	9'9-
BHKW-Fas. Sūd; Tür	82,3	1015,	6,3	6,0	1,17	4.7	-16,3	9,1-	0'0	0'0	-5.4	33	, 60,	0'0	0'0	4,9	-6,7	-7,1
Stickstb ffeinheit Wärmespeicher	80,0	933,3		3,0	-70,4	4,7	86	-3,9	0,0	0,0	60,5	33	7,8	0,0	0,0	6,4	1,7-	9'1-
Rührwerk Fermenter IV	79,0	1032,		3,0	-71,3	4,7	3.0	53	0'0	0'0	-22	-3,2	-4,7	4.8	A.	6.	83	-8,7
BGMKOA II-Abluftgitter	78,0	776,5		6,0	-68,8	4,7	-16,1	-1,5	0'0	0'0	-7,0	3,2	-1,7	0'0	0,0	1,9	-83	8,8
Gemis chkühler BHKW 2	87,0	1007,		3,0	-71.7	47	-18,7	43	0'0	0'0	9'2-	-3,3	89. 77	0,0	0'0	1,9	-89	-9,4
BGSW-Fas. Nord	70,4	792,9	8,5	6,0	-88,0	4.7	-10,2	6,0-	0,0	0,3	67	3,2	1,7	0,0	0,0	9	4.6	6,6
Gasverdichter	86,0	1010,		3,0	1,17	4.7	-19,5	4.5	0,0	2,4	φ m	-33	<u>~</u>	0,0	0,0	1,9	7,6-	-10,1
Betriebshale-Fas. Ost	71/2	1035, 6	124,0	0.9	-71,3	4,7	1,87	-03	0,0	0,0	-8,7	3,2	1,7	0,0	0'0	6.	6	-10,4
BGMKOA I-Zuluffgitter 2	78,0	776,9		6,0	8,88	4,7	-17,8	57	0,0	0,0	60 60 7	32	£.	0,0	0,0	1,9	-10,1	-10,5
BGMKOA Il-Zuluffgitter 1	78,0	776,0		6,0	-68,8	4.7	-17.9	un T	0,0	0.0	60 60	32	F 7	0'0	0.0	6,	-10,1	-10,6
BGHVA 1-Fas, Ost	66,4	769,4	29,7	6,0	-68,7	4.7		6'0-	0.0	1,5	-10,5	ę,	1,7	0.0	0,0	1,9	11,7	-12,2
Betriebshale-Fas. Nord	9'69	1034,	84,6	0,9	71,3	4.7	-12,8	-0,3	0,0	0,0	135	-3,2	7,7	0'0	0,0	1,9	14,7	-15,2
BHKW Abluft 2	70,0	1020,	1,0	0'9	-71.2	4,7	-15,3	6'0-	0.0	0,0	-16.0	-3,2	-1,7	0,0	0'0	1,9	-47,3	1.77-
BHKW Abluft 1	70,0	1021,	1,0	6,0	-71,2	4,7	-15,8	-1,0	0'0	0'0	-16,6	-32	-1,7	0'0	0.0	1,9	-17,9	-18,4
BHKW Zuluft 2	65,0	1016,	1,0	6,0	1,17	7.4	-12,4	-0.7	0.0	0.0	-17,9	3,2	17	0'0	0'0	6.	-19,2	9'61-
	0.00	200		1	77	93	3.0	750			70	30		No.				- 17

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

BHYNZOLLIT 1	Quelle	EW.	(V)	l oder S	2	Adiv	Agr	Abar	Aatm	ADI	dLrefl	গ্ৰ	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	151	L'S
68.0 1914 0.5 6.0 -71.1 -47 -12.8 -0.0 -18.3 -3.2 -1.7 0.0 0.0 19.8 -3.2 -1.7 -4.8 -4.8 19.9 -19.9 -19.0 19.0 -18.8 -3.2 -1.7 -4.8 -4.8 19.9 -2.1 <t< th=""><th></th><th>dB(A)</th><th>ш</th><th>m,m²</th><th>gp</th><th>gp</th><th>qB</th><th>甲</th><th>명</th><th></th><th>dB(A)</th><th>(A)(D)</th><th>gp</th><th>gp</th><th>명</th><th>ВB</th><th>8</th><th>dB(A)</th><th>dB(A)</th></t<>		dB(A)	ш	m,m²	gp	gp	qB	甲	명		dB(A)	(A)(D)	gp	gp	명	ВB	8	dB(A)	dB(A)
80,0 988,7 1 3,0 -70,9 4,7 -20,1 -6,1 0,0 -13,8 -3,3 -1,1 -4,8 -4,8 -1,9 -20,1 -20,1 -15,9 -3,2 -1,7 -4,8 -4,8 1,9 -20,1 -20,1 -10,9 -3,2 -1,7 -4,8 -4,8 1,9 -20,1 -20,1 -10,9 -3,2 -1,7 -4,8 -4,8 1,9 -20,1 -20,1 -10,9 -10,1 -4,8 -4,8 -4,8 -4,8 -20,1 -20,1 -20,1 -10,1 -10,0 -10,0 -10,1 -10,0 -10,0 -10,1 -10,0	BHKW Zuluft 1	65,0	1014,		6,0	-71,1	4,7	-12,8	7'0-	0'0	0'0	-18,3	-3,2	41-	0'0	0,0	1,9		-20,1
79.0 962.9 7.0 7.0 4.6 0.0 -1.5 3.2 -1.7 4.8 4.8 1.9 -2.1 79.0 943.1 7.0 -7.0 4.0 0.0 -1.6 3.2 -1.7 4.8 4.8 1.9 -2.1 79.0 943.1 7.0 -7.0 4.0 0.0 -1.7 4.8 4.8 1.9 -2.1 79.0 1.0 2.0 0.0 0.0 -1.7 3.2 -1.7 4.8 4.8 1.9 -2.1 53.2 776.6 2.0 6.0 -86.7 -47 -1.1 -1.0 0.0 -2.7 -1.7 -4.8 4.8 1.9 -2.2 25.2 770.2 1.0 6.0 -2.7 -1.7 -1.0 0.0 -1.4 -1.7 -1.0 0.0 -1.7 -1.7 -4.8 4.8 1.9 -2.2 25.2 770.2 1.0 0.0 0.0 2.2 -1.7	Stickstoffeinheit Wärmespeicher	80,0	988,7		3,0	0	47	-20,1	19	0,0	0'0	-188	-33	8 ⁺	0'0	0,0	1,9	-20,1	-20,6
79.0 943.1 7.0 9.0 -1.0	Rührwerk Fermenter II	79,0	962,9		3,0	1		-18,0	4.6	0'0	0'0	-15,9	32	17	4,8	4.8	6,	-21,9	-22.4
79.0 1044 3.0 71,4 4.7 19,1 4,7 0,0 0,0 17,8 3.2 1,1 4,8 1,9 23,9 53.2 76.6 2.0 6.0 6.0 6.0 6.0 6.0 1,9 2.24 1,8 0.0 0.0 1,9 2.24 1,8 1,9 2.24 1,9 2.24 1,1 0.0 0.0 2.7,8 3.2 1,1 0.0 0.0 1,9 2.24 1,1 0.0 0.0 1,1 0.0 0.0 1,1 0.0 0.0 1,1 0.0 0.0 1,1 0.0 0.0 1,1 0.0 0.0 1,1 0.0 0.0 1,1 0.0 0.0 1,1 0.0 0.0 0.0 4,2 1,1 0.0 0.0 1,1 1,0 0.0 1,1 1,1 0.0 0.0 44,2 3.1 1,1 0.0 0.0 44,2 3.1 1,1 0.0 0.0 44,2	Rührwerk Fermenter I	79,0	943,1		3,0	w		0	4,5	0,0	1,0	-16,5	32	47	4,8	4,8	6,	-22,6	23,0
53.2 766.8 2.0 6.0 -88.7 4.7 -12.2 -14 0.0 -27.8 -3.2 -1.8 0.0 0.0 1.9 -23.4 -3.2 -1.8 0.0 0.0 1.9 -23.4 -3.2 -1.8 0.0 0.0 1.9 -23.4 -3.7 0.0 0.0 1.0 -28.7 -3.7 0.0 0.0 0.0 -28.7 -3.7 0.0 0.0 1.0 -28.7 -3.7 0.0 0.0 0.0 -44.3 -3.1 -1.7 0.0 0.0 1.0 44.3 -3.1 -1.7 0.0 0.0 1.9 -28.7 -28.7 -47.0 0.0 0.0 44.3 -3.1 -1.7 0.0 0.0 1.9 -28.7 -47.0 0.0 0.0 44.4 -3.1 -1.7 0.0 0.0 1.9 -28.4 -28.4 -28.7 -47.7 -0.0 0.0 44.4 -3.1 -1.7 0.0 0.0 1.9 -47.0 0.	Rührwerk Fermenter I	79,0	1044,		3,0		371	-	4,7	0'0	0'0	-17,8	-32	-1,7	8,	84	1,9	-23,9	-24,3
53,2 771,2 2,0 6,0 -88,7 -4,7 -12,5 -14,1 0,0 0,0 -28,1 -32,2 -1,7 0,0 0,0 -28,1 -32,2 -1,7 0,0 0,0 1,0 -42,5 -32,2 -1,7 0,0 0,0 1,0 -42,5 -32,4 -1,7 0,0 0,0 1,0 -42,5 -32,7 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0 -44,4 -31,1 -1,7 0,0 0,0 1,0	BGHVA 2, E-Raum-Fas. Nord; Tür	53,2	766,8	2,0		-68,7			1,4	0.0	0.0	-27,8	-3,2	€0, 1,00	0.0	0,0	1,9	-28,1	-29,5
26,9 764,2 10,6 6,0 -88,7 -4,1 -1,1 -1,0 0.0 -42,5 -32 -1,7 0,0 0,0 1,9 -43,7 -1,7 0,0 0,0 1,9 -43,7 -1,7 0,0 0,0 1,9 -43,7 -1,7 0,0 0,0 1,9 -43,7 -1,7 0,0 0,0 1,9 -43,7 -1,7 0,0 0,0 1,9 -43,7 -1,7 0,0 0,0 1,9 -45,7 -45,7 -45,7 -45,7 -43,7 -1,7 0,0 0,0 1,9 -45,7 -45,7 -45,0 0,0 0,0 44,4 -3,1 -1,7 0,0 0,0 1,9 -45,7 -45,1 -45,0 -45,0 -45,0 -44,4 -3,1 -1,7 0,0 0,0 1,9 -45,7 -45,1 -45,0 -45,0 -45,0 -44,3 -1,7 0,0 0,0 1,9 -45,7 -45,0 -45,0 -1,0 0,0 44,4 -3,1 </td <td>BGHVA 1, E-Raum-Fas. Nord; Tür</td> <td>53,2</td> <td>771,2</td> <td>2,0</td> <td></td> <td>48,7</td> <td></td> <td></td> <td>4.7</td> <td>0'0</td> <td>0'0</td> <td>-28,1</td> <td>-3,2</td> <td>60 1-</td> <td>0,0</td> <td>0,0</td> <td>6,1</td> <td>-28,4</td> <td>-29.8</td>	BGHVA 1, E-Raum-Fas. Nord; Tür	53,2	771,2	2,0		48,7			4.7	0'0	0'0	-28,1	-3,2	60 1-	0,0	0,0	6,1	-28,4	-29.8
27,2 766,1 11,2 3,0 -86,7 -4,6 -0.2 -1,1 0,0 0,0 -44,4 -3,1 -1,7 0,0 0,0 1,4 -3,1 -1,7 0,0 0,0 1,4 -3,1 -1,7 0,0 0,0 1,9 -45,4 -3,1 -1,7 0,0 0,0 1,9 -45,6 -3,1 -1,7 0,0 0,0 1,9 -45,6 -3,1 -1,7 0,0 0,0 1,9 -45,6 -3,1 -1,7 0,0 0,0 1,9 -46,6 -3,1 -1,7 0,0 0,0 1,9 -46,6 -3,1 -1,7 0,0 0,0 1,9 -46,4 -3,1 -1,7 0,0 0,0 1,9 -46,4 -3,1 -1,7 0,0 0,0 1,9 -46,4 -3,1 -1,7 0,0 0,0 1,9 -46,4 -3,1 -1,7 0,0 0,0 1,9 -46,4 -3,1 -1,7 0,0 0,0 1,0 0,0 0,0	BGHVA 2, E-Raum-Fas. West	26,9	764,2	10,6		-68,7			-1,0	0,0	0'0	42,5	-32	4,7	0,0	0,0	6.	-43,7	44,2
27.2 770.5 11.2 3.0 68,7 4,6 -0.2 -1,1 0.0 444 -3.1 -1,7 0.0 0.0 1,9 -45.2 -3.1 -1,7 0.0 0.0 1,9 -45.2 -45.3 -27.0 0.0 0.0 1,9 -45.3 -27.1 0.0 0.0 1,9 -45.3 -3.1 -1,7 0.0 0.0 1,9 -45.1 -1,7 0.0 0.0 1,9 -45.2 -47.0 <td>BGHVA 2, E-Raum-Dach</td> <td>27,2</td> <td>766,1</td> <td>11,2</td> <td></td> <td>-68,7</td> <td>4.6</td> <td></td> <td>++</td> <td>0,0</td> <td>0,0</td> <td>-44,3</td> <td>13.1</td> <td>1,7</td> <td>0,0</td> <td>0,0</td> <td>6.</td> <td>-45,4</td> <td>0'94</td>	BGHVA 2, E-Raum-Dach	27,2	766,1	11,2		-68,7	4.6		++	0,0	0,0	-44,3	13.1	1,7	0,0	0,0	6.	-45,4	0'94
27,0 768,1 10,8 6,0 -68,7 -4,7 -8,2 -0,9 0,0 46,9 -3,1 -1,7 0,0 0,0 1,9 -4,1 -1,7 0,0 1,9 -4,1 -4,1 -6,0 -1,0 0,0 1,6 -45,8 -3,1 -1,7 0,0 0,0 1,7 0,0 0,0 1,7 0,0 0,0 1,7 0,0 0,0 1,7 0,0 0,0 1,7 0,0 0,0 0,0 -46,4 -3,1 -1,7 0,0 0,0 1,9 -47,7 -47,0 -47,0 -47,0 0,0 0,0 0,0 -46,4 -3,1 -1,7 0,0 0,0 1,9 -47,7 -47,0 -47,7 -47,0 -47,7 -47,0 -47,7 -47,0 -47,7 -47,8 -3,1 -47,7 -47,0 -47,7 -47,8 -3,1 -47,7 -47,0 -47,7 -47,8 -47,7 -47,8 -47,7 -47,8 -47,7 -47,8 -47,7 -	BGHVA 1, E-Raum-Dach	27,2	770,5	11,2		1	4.6		÷	0'0		44,4	7	1,7	0'0	0,0	6	45,5	0,84
26,9 768,6 10,6 6,0 -88,7 -47,0 0,0 1,6 -45,8 -3.1 -1,7 0,0 0,0 1,9 -47,0 20,0 246,0 -3.1 -1,7 0,0 0,0 1,9 -47,0 29,0 20,0 46,0 -3.1 -1,7 0,0 0,0 1,9 -47,2 23,1 -1,7 0,0 0,0 1,0 -46,4 -3.1 -1,7 0,0 0,0 1,9 -47,7 20,0 0,0 1,0 -47,7 0,0 0,0 1,0 -47,7 0,0 0,0 -46,4 -3.1 -1,7 0,0 0,0 1,9 -47,7 20,0 0,0 1,7 -47,8 -3.1 -47,7 -47,7 -47,0 -47,7 -47,8 -47,7	BGHVA 2, E-Raum-Fas. Ost	27,0	768,1	10,8		~	4,7		6'0-	0'0		44,9	13.	-1,7	0'0	0,0	1,9	- 9	9'94
29,9 766,9 21,1 6,0 -68,7 -4,7 -7,7 -0.9 0,0 -46,0 -3,1 -1,7 0,0 0,0 1,9 -46,4 -3,1 -1,7 0,0 0,0 1,9 -46,4 -3,1 -1,7 0,0 0,0 1,0 -46,4 -3,1 -1,7 0,0 0,0 1,0 -46,4 -3,1 -1,7 0,0 0,0 1,0 -46,4 -3,1 -1,7 0,0 0,0 1,0 -46,4 -3,1 -1,7 0,0 0,0 1,0 -46,4 -3,1 -1,7 0,0 0,0 1,0 46,4 -3,1 -1,7 0,0 0,0 1,0 46,4 -3,1 -1,7 0,0 0,0 1,0 47,7 -1,0 -47,7 -47,7 -1,0 -3,8 0,0 0,0 0,0 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	BGHVA 1, E-Raum-Fas. West	26,9	768,6	10,6		-88,7	47		-1,0	0,0	1,6	45,8	5	-1,7	0.0	0,0	1,9	-47,0	47,5
29,9 777,2 21,1 6,0 -68,7 -4,7 -8,1 -0,9 0,0 0,0 -46,4 -3,1 -1,7 0,0 0,0 1,9 -47,7 10,0 0,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,	BGHVA 2, E-Raum-Fas. Nord	29,9	6'994	21,1		-	4.7	1.7	-0,9	0'0	0,0	48,0	5	1,7	0,0	0,0	6,1	47,2	47.7
27,0 772,4 10,8 6,0 -88,7 -4,7 -6,2 -0,0 1,7 -47,8 -3,1 -1,7 0,0 0,0 1,7 -47,8 -3,1 -1,7 0,0 0,0 1,7 -47,6 -3,1 -47,6 -3,8 0,0 0,0 29,7 -3,3 -1,8 -0,6 0,0 1,9 28,7 -3,3 -1,8 -0,6 0,0 1,9 28,7 -3,3 -1,8 -0,6 0,8 28,7 -3,3 -1,8 -0,6 0,9 0,0 29,7 -3,3 -1,8 -0,6 0,9 1,3 28,7 -3,3 -1,8 -0,6 0,9 0,0 0,0 29,7 -3,3 -1,8 -0,6 0,9 1,9 -1,8 -1,8 -1,9 1,9 1,9 28,7 107,0 926,4 4,7 -0,6 -3,9 0,0 0,0 29,5 -3,3 -1,8 9,0 1,9 1,9 -1,8 -1,8 1,9 1,9 1,9 <td>BGHVA 1, E-Raum-Fas. Nord</td> <td>29,9</td> <td>771,2</td> <td>21,1</td> <td></td> <td>1</td> <td>47</td> <td></td> <td>6'0-</td> <td>0,0</td> <td>0'0</td> <td>46,4</td> <td>-13</td> <td>1,7</td> <td></td> <td>0,0</td> <td>1,9</td> <td>47,7</td> <td>48,1</td>	BGHVA 1, E-Raum-Fas. Nord	29,9	771,2	21,1		1	47		6'0-	0,0	0'0	46,4	-13	1,7		0,0	1,9	47,7	48,1
107,0 648,4 1927,7 3.0 -89,6 4,7 -5,4 -3,0 0,0 1,3 28,7 -3,3 -1,8 -0,6 0,8 1,9 107,0 848,4 1927,7 3.0 -89,6 4,7 -5,4 -3,0 0,0 1,3 28,7 -3,3 -1,8 -5,1 1,9 1,9 1,9 1,9 1,9 1,4 4758,7 3.0 -70,3 4,7 -1,0 -3,8 0,0 0,0 1,3 28,7 -3,3 -1,8 -5,0 1,9 1,9 1,9 1,9 1,9 1,4 488,2 2 3,0 -71,1 4,7 -0,8 -3,9 0,0 0,0 29,5 -3,3 -1,8 8,0 1,9 1,9 1,9 1,4 1,9 13,4 647,9 3,0 -71,2 4,7 -3,2 -3,6 0,0 0,0 1,4 12,4 -3,3 -1,8 8,0 0,0 0,8 8,0 1,4 12,4 -3,3 -1,8 8,0 0,0 0,8 1,4 12,4 -3,3 -1,8 8,0 0,0 0,8 1,4 12,4 -3,3 -1,8 1,0 1,0 0,8 1,9 1,9 1,4 13,4 647,9 3,0 -70,2 4,7 -2,4 -5,8 0,0 0,0 1,4 12,4 -3,3 -1,8 1,0 1,0 0,0 1,4 12,4 -3,3 -1,8 1,0 1,0 1,0 1,4 12,4 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	BGHVA 1, E-Raum-Fas, Ost	27,0	772,4	10,8		1-	4,7	N	-0.9	0'0	1,7	47,8	13.1	47	0'0	0,0	6,1	49.0	18,5
107.0 848,4 1927,7 3.0 -89,6 4,7 -5,4 -3,0 0,0 1,3 28,7 -3,3 -1,8 -5,1 1,9 1,9 1,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Schlepper Verdichten Silage Maisernte	107,0	1000,	3390,8		77,0	4,7	9,0-	60	0,0	0,0	29,7	5	₩.	90-			26,7	
age 107,0 926,4 4758,7 3,0 -70,3 4,7 -1,0 -3,8 0,0 0,0 30,3 -3,3 -1,8 -9,0 1,9 1,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Teleskoplader Verladung Kartoffelager	107,0	848,4	1927,7	3,0	9'69	4,7	1941	-3,0		53	28,7	333	7,8	15		4,9	22,3	
age 107,0 1014, 4882,2 3,0 -71,1 4,7 -0,8 -3,9 0,0 0,0 29,5 -3,3 -1,8 -9,0 1,9 1,9 1,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Radlader Beschickung Anlage	107,0	926,4	4758,7	3,0	-70,3	47	-	38	0,0	0,0	30,3	-33	۵ ۲	-9,0		1,9	19,9	
87,4 1000, 3390,8 3,0 -71,0 4,7 -0,7 -3,2 0,0 0,0 10,7 -3,3 -1,8 8,0 0,8 87,8 1034, 301,3 3,0 -71,3 4,7 -3,2 -3,6 0,0 0,1 8,2 -3,3 -1,8 8,0 0,8 98,7 87,2 3,0 -71,0 4,7 -2,0 -3,6 0,0 0,0 6,6 -3,3 -1,8 8,0 0,8 9,8 10,9 11,9 13,4 647,9 3,0 -70,2 4,7 -2,5 -2,8 0,0 1,4 12,4 -3,3 -1,8 1,0 0,6 0,6 1,4 12,4 -3,3 -1,8 1,0 0,0 0,6 1,4 12,4 -3,3 -1,8 1,0 0,0 0,0 0,0 1,4 12,4 -3,3 -1,8 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	Radiader Beschickung Anlage	107,0	1014,	4882,2		71.1	4.7	8,0-	3.9	0,0	0,0	29,5	62	00 71	0,6-		1,9	18,1	
87,8 1034 301,3 3,0 -71,3 -4,7 -3,2 -3,6 0,0 0,1 8,2 -3,3 -1,8 8,0 0,8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	Fz Abkippen Maisernte	87,4	1000,	3390,8	0		4,7	2.0-	-32	0,0	0,0	10,7	-33	1,8	8,0		8,0	16,2	
lagerhalle 91,1 913,4 647,9 3,0 -71,0 4,7 -2,0 -3,6 0,0 0,0 6,6 -3,3 -1,8 8,0 0,8 1 109,6 1,1 109,6 1,1 1035, 109,6 4,1 932,9 684,2 3,0 -70,2 4,7 -2,4 -5,8 0,0 1,4 12,4 -3,3 -1,8 1,0 0,6 1,6 1,4 1,2,4 -3,3 -1,8 1,0 1,0 1,0 1,4 1,2,4 1,2 1,3 1,0 1,0 1,0 1,4 1,2 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	IFz Fahrspur Maisernte	87,8	1034,		3,0	-71,3	4,7	-3,2	-3,6	0'0	0,1	8,2	33	1,8	8,0		8,0	13,7	
lagerhalle 91,1 913,4 647,9 3,0 -70,2 4,7 -5,5 -2,8 0,0 1,4 12,4 -3,3 -1,8 1,0 0,6 1 109,6 1 109,6 4 135, 3,0 -71,3 -4,7 -2,4 -5,8 0,0 0,0 28,4 -3,3 -1,8 -16,8 0,0 0,0 10,0 12,4 932,9 684,2 3,0 -70,4 4,7 -4,7 -3,1 0,0 0,5 12,0 -3,3 -1,8 -5,1 2,0	IFz Stellgeräusch Waage Maisernte	84,8	988,7	67,2	3,0	0	4,7	0	-36	0.0	0'0	9'9	-33	£,	8,0		8'0	12,1	
109,6 1035, 3,0 -71,3 -4,7 -2,4 -5,8 0,0 0,0 28,4 -3,3 -1,8 -16,8 0,0 0,0 91,4 932,9 684,2 3,0 -70,4 -4,7 -4,7 -3,1 0,0 0,5 12,0 -3,3 -1,8 -5,1 2,0	Lkw/Fz Fahrspur Kartoffellagerhalle	91,1	913,4	647,9	3,0	-70,2	4,7	w	-28		† .	12,4	-33	60 T	1,0		9'0	10,7	
91,4 932,9 684,2 3,0 -70,4 -4,7 -4,7 -3,1 0,0 0,5 12,0 -3,3 -1,8 -5,1 2,0	Lkw/Fz Pumpe Ani. Gülle	109,6	1035,		3,0	(C)	14.7		60	0'0		28,4	523	1	-16,8		0'0	8,3	
	Lkw/Fz Fahrspur Anl. Mist	91,4	932,9	684,2	0				13.		9'0	12,0	333	7	27		2,0	5,7	

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Onelle	M	(7)	oder S	2	Adiv	Agr	Abar	Astm	ADI	dLref	9	Cmet,T	Cmet,N	d.w.T	d_w,N	ZR	5	3
	(A)(A)	ш	m,m²	뛰	eg eg	留	甲	명	GB.	dB(A)	dB(A)	gp	明	명	명	명	dB(A)	dB(A)
IO-Nr. 03 mögliche Baugrenze RW,T 55 dB(A)	(A)B(A)	RW,N.	40 dB(A)	LFT	36 dB(A) L	LrN 33	dB(A)								1 5		
Kartoffellager 4 - Lüftungskulisse 2	88,0	579,4	5,8		-88,3	4.5	-0,4	-23	0'0	1,7	22,2	-2,9	9	0'0	0,0	1,9	21,2	20,6
BHKW Containeranlage (Fabrikat 2G)	98,0	673,9		3,0	9'19-	4,6	-5.2	-21	0,0	0,0	21,6	7	1,7	0'0	0,0	₽. -	20,4	19,9
Kartoffellager 4 - Lüftungskulisse 1	88,0	582,7	5,8	6,0	68,3	4,5	-0,4	-2,4	0,0	1,0	21,4	-29	φ. 7	0,0	0,0	6.	20,4	19,8
Biomethanaufbereitung	91,0	651,7		3,0	-67,3	F.6	0,0	-13	0'0	0'0	20,9	-3,2	1,7	0'0	0,0	6	19,6	19,1
BGHVA 2-Fas West Tür	90'8	545,6	3,5	6,0	-66,7	4,6	4.8	6'0-	0'0	0'0	20,6	m	-17	0'0	0,0	1,9	19,5	19,0
Kartoffellager 2 - Lüffungskulisse 1	88,0	596,1	8,0	6,0	-98,5	4,5	-0,1	-2,4	0.0	0,0	20,5	29	-1,8	0.0	0,0	4.9		18,9
Kartoffellager 3 - Lüffungskulisse 2	88,0	586,0	8,0	6,0	-86,4	4,5	-0'3	-24	0'0	0'0	20,4	-29	7,6	0'0	0'0	6,	19,4	18,8
Kartoffellager 2 - Lüftungskulisse 2	88,0	592,8	8,3	6,0	-86,5	4,5	-0.2	-2,5	0'0	0,0	20,4	-2,9	9,1	0,0	0,0	1,9	19,4	18,8
Kartoffellager 3 - Lüftungskulisse 1	88,0	589,4	5,8	6,0	-88,4	4.5	-0,3	-25	0'0	0,0	20,4	-2.9	9	0,0	0,0	£.	19,4	18,8
Kartoffellager 1 - Lüftungskulisse 1	88,0	603,3	5,8	6,0	9'99-	4,5	-0,2	-2,5	0'0	0'0	20,2	-2,9	9,7	0'0	0,0	4.9	19,2	18,6
Kartoffellager 1 - Lüftungskulisse 2	88,0	599,8	5,8	6,0	9.99	4.5	-0,3	-2,4	0,0	0,0	20,2	-29	9,1	0,0	0,0	6 .	19,2	18,6
Gärrestfrocknungsanlage Regenis GT	93,0	768,3	114,7	3,0	-88,7	9.4	-1,2	5,1	0'0	0'0	20,0	-3,2	00 T	0,0	0'0	6	18,7	18,2
BGHVA 1-Abluft Ventilator	84,3	545,7		6,0	-66,7	4,6	7,0-	1,1	0'0	0'0	18,3	-30	9	0'0	0,0	1,9	17,2	16,6
BGHVA 1 Luftkühler Ventilator	84,3	543,1		3,0	-86,7	4,5	7'0-	-1,0	0,0	2,2	17,6	-30	9,7	0,0	0,0	1,9	16,5	16,0
Dachlüffer 1 Annahmebehälter	85,0	5'699		3,0	-67,5	4,5	0,0	-0,1	0.0	0.0	15,9	-30	9,1	0'0	0,0	6,1	14,8	14,3
Dachlüffer 1 Lagerbehälter IV	85,0	683,7		3,0	2,73	4,5	0,0	-0,1	0.0	0,0	15,7	-30	1,6	0.0	0'0	1,9	14.6	14,1
Dachlüfter 1 Fermenter I	85,0	687,1		3,0	-87.7	4,5	0,0	-0.1	0'0	0'0	15,7	-30	9	0'0	0,0	6,1	14,6	14,0
Dachlüfter 1 Fermenter III	85,0	0'689		3,0	8'79-	4,5	0,0	-0,1	0'0	0'0	15,6	3.0	9,1-	0.0	0,0	£.	14,6	14,0
Dachlüfter 2 Fermenter I	85,0	696,1		3,0	-67,8	4,5	0,0	6,	0'0	0,0	15,5	30	1,6	0,0	0,0	6.	14,5	13,9
Dachlüffer 2 Annahmebehälter	85,0	673,3		3,0	9'.29	4.5	-0'3	0,1	0'0	0'0	15,5	30	9	0'0	0,0	6	14,4	13,9
Dachlüfter 1 Nachgärer II	85,0	711,4		3,0	-68,0	4,5	0,0	9	0'0	0'0	15,4	30	9	0'0	0,0	1,9	14,3	13,7
BGHVA 2 Luffkühler Ventilator	84,3	540,4		3,0	-85,6	4.5	-32	-1,0	0.0	2,4	15,3	38	-1,6	0,0	0,0	4.9	14,2	13,7
Dachüffer 1 Nachgärer	85,0	695,6		3,0	8'.29	4,5	-0,2	-0,1	0'0	0,0	15,3	30	7.8	0,0	0	6,1	14,2	13,7
Dachlüffer 1 Fermenter II	85,0	713,6		3,0	-88	4,5	0-	6,0	0'0	0,0	15,3	-30	9,1	0,0	0,0	1,9	14,2	13,6
BGHVA 2-Abluft Ventilator	84,3	543,3		6,0	48,7	4,6	39	-1,0	0'0	0'0	15,1	-30	9,1	0'0	0,0	4.9	14,0	13,5
Dachlüfter 1 Fermenter IV	85,0	732,9		3,0	-68,3	4,5	0,0	-0,1	0'0	0,0	15,1	30	9,17	0'0	0,0	4.9	14,0	13,4
BGHVA 2-Zuluftgitter	88,6	545,6	9'0	6,0	198'1	4,6	-8,2	7	0,0	0,0	15,0	32	17	0,0	0,0	1	13,8	13,3
Dachlüfter 1 Lagerbehälter II	85,0	1,757,1		3,0	989	4,5	0,0	-0,1	0'0	0'0	14,8	30	-1,7	0'0	0,0	6,	13,7	13,1
Feststoffeintrag mit Flüssigfuttereinheit II	95,0	693,3	30,2	3,0	8'19	4,6	0.0	-30	0'0	0'0	22,6	-32	-1,7	-7,8	-7,8	1,9		13,1
Dachlüffer 1 Lagerbehälter III	85,0	761,9		3,0	9'89-	4.6	0,0	1,0-	0,0		14,7	-30	-1,7	0,0	0,0	1,9	13,6	13,1

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

				- Carried			September 1	Y			8	THE PERSON NAMED IN						
	(A)(A)	ш	т,ш.	땅	땅	땅	畏	贸	明	dB(A)	dB(A)	8	뛰	甲	贸	쁑	dB(A)	dB(A)
Dachlüffer 2 Fermenter II	85,0	720,7		3,0	1,8	4,5	200	-0,1	0,0	0,0	14,7	3,0	1,6	0'0	0,0	1,9	13,6	13,0
BGSW-Abluftventilator	82,2	571,8		6,0	1,88	9.4	001	-	0'0	0'0	14.7	7	1,7	0'0	0,0	6	13,6	13,0
Gärresttrocknungsanlage Regenis GT	93,0	663,5	142,0	3,0	-67,4	4,6	-82	Turk	0'0	0'0	14,4	-32	-1,7	0'0	0,0	1,9	13,2	12,7
Dachlüffer 1 Annahmebehälter	85,0	775,1		3,0	8,88-	4,5	2.0	1,0	0.0	0.0	14,4	57	-1,7	0,0	0'0	4.9	13,2	12,7
Dachlüfter 2 Nachgärer I	85,0	794,6		3,0	-88,0	4.6	-	neta.	0'0	0.0	14,3	5	1,7	0,0	0,0	6,	13,1	12,6
BGHVA 1 Luftkühler Lamellen	83,9	543,1		3,0	-86,7	4,6	-24	0	0'0	F	14,2	5	1,7	0,0	0,0	1,9	13,1	12,6
Dachlüffer 2 Annahmebehätter	85,0	789,5		3,0	6,88	4.6	Of	4	0'0	0'0	14,2	13.1	47	0'0	0,0	6,	13,1	12,5
Dachlütter 1 Lagerbehälter	85,0	739,8		3,0	-88,4	4,5	60	0,1	0,0	0,0	14,1	-3,0	9,1	0'0	0,0	6,4	13,0	12,5
Dachlüfter 1 Lagerbehälter I	85,0	795,8		3,0	-89'0	4,8	nt.		0,0	0,0	14,1	13.1	17	0'0	0,0	6.	13,0	12,5
Dachlüfter 2 Fermenter IV	85,0	749,9		3,0	-88,5	4,5		U. FEE	0'0	0'0	14,1	-30	1,7	0,0	0,0	6) -	13,0	12,4
Dachlüfter 2 Fermenter I	85,0	774,2		3,0	-68,8	4,6	100	0,1	0'0	0'0	14,1	4	-1,7	0'0	0,0	1,9	12,9	12,4
Dachlüffer 2 Fermenter III	85,0	713,8		3,0	-88,1	4,5	20	e de const	0,0	0,0	12,7	-3,0	1,6	0,0	0,0	1,9	11,6	11,1
BHKW-Fas. Sūd; Tür	82,3	747,1	6,3	6,0	-68,5	4,6	-	the an	0,0	0.0	12,5	32	17	0'0	0,0	60,	11,2	10,8
Dachlüfter 1 Fermenter I	85,0	773,8		3,0	-68,8	4,6	-2,6		0.0	0'0	12,0	13.1	1,7	0.0	0,0	1,9	10,9	10,4
BGHVA 2 Luffkühler Lamellen	83,9	540,5		3,0	9'99-	4.6		0,1-	0'0	4.2	4,1,4	3,1	-1,7	0'0	0,0	6,1	10,2	2'6
Betriebshalle-Fas, Süd; Tor	80,1	754,8	20,3	6,0	-68,5	4,6	-	O MATE	0,0	0'0	11,2	-3,2	4,7	0,0	0,0	£,	6,6	9,4
Dachlüfter 2 Nachgärer II	85,0	743,7		3,0	-88,4	4,5	10.0	1,0	0,0	0'0	10,4	3.0	7,6	0,0	0,0	6.	9,3	8,7
Feststoffeintrag mit Flüssigfuttereinheit	95,0	699,1	28,7	3,0	6'19-	9,4	-	0	0'0	0'0	17,4	-3,2	-1,7	-7,8	-7,8	6	8,4	6'1
Dachlüffer 2 Lagerbehälter IV	85,0	721,4		3,0	-68,2	4,5	100	SALE N	0'0	0'0	9,3	-3,0	9/-	0'0	0,0	1,9	8,3	1'1
BGHVA 2-Abluft passiv	78,0	542,8		6,0	-85,7	4,6	_	CHICK CHICK	0.0	0,0	9'8	-30	-1,6	0.0	0'0	4,9	7,5	6,9
Dachüfter 2 Nachgärer	85,0	721,0		3,0	-88,2	4.5	6,9	-0,1	0'0	0'0	8,4	3,0	-1,6	0,0	0,0	6,	7,3	6,7
Dachlüfter 1 Nachgärer I	85,0	792,2		3,0	0'89	4,6		Japan Japan	0.0	0'0	8,0	£.	-1,7	0,0	0,0	1,9	6,9	6,3
Dachlüffer 2 Lagerbehälter II	85,0	791,3		3,0	68.0	4.6		-0,1	0'0	0'0	7,8	5	47	0'0	0,0	6,1	6,7	6,1
BGHVA 1-Fas, Ost, Tür	90'6	550,1	3,50	6,0	-65,8	4,6	17.71	1,1	0,0	0,0	7,4	£.	1,7	0'0	0,0	£,	6,3	5,8
BGSW-Zulufigitter	1,77	571,8		6,0	1,98	4.6	-4.7	1,1	0,0	0,0	7,2	7	11	0,0	0,0	6.	6,0	5,5
Dachlüfter 2 Lagerbehätter III	85,0	797,2		3,0	0,68-	94	-7,4	-0,1	0'0	0'0	6,9	7	7,1	0,0	0,0	ص ص	5,7	5,2
BGHVA 1-Abluft passiv	78,0	545,3		6,0	-66.7	4,6	65	1,1	0'0	0'0	6,8	-3,0	-1,6	0'0	0,0	1,9	5,7	5,2
BGMKOA LAbluffgitter	78,0	542,2		6,0	7,28-	4,6	-83	1,0	0,0	0,0	6,4	7	-1,7	0,0	0,0	1,9	5,3	4,7
BGMKOA LZuluftgitter 1	78,0	543,0		6,0	-85,7	4,6	88	1,0	0,0	0'0	5,9	7	17	0'0	0,0	6,	4,7	4,2
Dachlüffer 2 Lagerbehälter	85,0	762,5		3,0	9'89-	4,5	_	-0,1	0.0	0'0	5,7	£.	-4,7	0.0	0,0	1,9	4,6	4.0
BGSW-Fas. West; Tür	75,2	572,5	2,0	6,0	-88,1	4.6	38	1,0	0'0	0,0	5,7	3.3	-17	0'0	0,0	6,	4,5	4,0

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Sticksbiffeinheit Wärmespeicher BGMKOA LZulufigitter 2 BGHVA 1-Zulufigitter 3 BGHVA 1-Zulufigitter 3 BGHVA 1-Zulufigitter 3 BGHVA 1-Zulufigitter 3 BGSW-Fas. Süd BGSW-Fas. West 70,0		Е	Em m	ç														
mespeicher sr 2 hälter I			THE STATE OF	90	eg eg	铝	甲	田田	dB c	(A)((A)(D)	8	명	명	g	8	dB(A)	dB(A)
naiter I häiter I		671,4		91	- 5'19	4.6	- 100		0,0	0,0	5,6	32	11	0'0	0,0	1.9	4,3	3,9
hälter I		541,7		-	- 1,38	9,4	-7,3	0,1-	0'0	0'0	5,4	5	1,7	0'0	0,0	6	4,2	3,7
in o in the state of the state		813,7		3,0	69,2	- 100	1000	2400	0'0	0'0	4,4	5	-4,7	0'0	0,0	1,9	3,3	2,8
Elisonofi Haranna		550,2	9,0	-	85.8	4.6	-19,8	7	0.0	0,0	3,3	-3,2	-1,7	0,0	0'0	1,9	2,1	1,6
			**	-	9'89	4,5	-	-0,5	0'0	0'0	2,9	-29	1,8	0'0	0,0	6,1	1,9	-
		571,8		0'9	66,1	-	-25	CHINA	0,0	0,0	2,6	7	-1,7	0,0	0,0	1,9	1,4	6'0
		572,5	5,4	0	66,1	4,6	-		0'0	0'0	2,6	13.1	47	0'0	0,0	4,9	1.4	6'0
		6,787		0	688	4,6	-12,7	-21	0'0	0,0	9,7	-3.2	8,1-	-7.8	-7,8	6,	9'0	0,2
BGSW-Dach 69,9		573,0	5,3	0	- 299	4,5	-0.2		0,0	0,0	6,0	3.0	9	0,0	0,0	6.	-0,1	7'0-
Rührwerk Fermenter III 79,0		6,288	9	0	- 1.78		AIA	-5.0	0'0	0'0	4.7	5	1,7	4.8	4.8	6)	-1,2	1,7
Betriebshale-Fas. Süd 67,7		755,4	54,8	-	9,89	W	01	-0,5	0'0	0'0	10	4	-1,7	0'0	0,0	1,9	-1,3	-1,8
BGHVA 2-Fas. West 86,5		945,6			- 1,38	-	-	7'0	0.0	0,0	-0,4	-3,0	-1,6	0,0	0,0	1,9	1,5	-21
BGHVA 1-Dach 67,2		549,1	35,2	3,0	86.38	4,5	- 00	8,0	0.0	0'0	4,3	-29	1,8	0.0	0,0	6,0	23	-29
BGHVA 1-Fas. Sūd 65,2		545,8		0	66,7	1	10	7,0	0.0	0.0	-1,4	-3,0	9,1	0.0	0'0	1,9	-2.4	-30
BGHVA 2-Dach 67,2	United to	946,6	35,2	0	85,7	10.4	60-	7,0	0'0	0,0	1,7	-29	9,1-	0,0	0,0	6,1	-26	-3,2
BGHVA 2-Fas. Süd 85,2		543,4		0	65,7	4,6	-3.1	7.0	0,0	0,0	-2,8	-3.0	9,7	0,0	0,0	6.	3.0	4,4
BGMKOA II-Abluffgitter 78,0		554,0		6,0	6,38	4,6	110	7.7	0,0	0,0	£.	13.1	1,7	0,0	0,0	6.	-4,2	-4.8
Gemis chkühler BHKW 1 87,0		743,1		3,0	- 4'88	4,6	-68	23	0'0	0,0	F	3,2	-1,8	0'0	0,0	6	4,4	6,4
BGHVA 1-Fas. West 67,0		548,0	34,1	0	86.8	4,6	-7.0	-0,7	0'0	9,1	-3,4	-3,0	-16	0'0	0,0	1,9	4,4	-5,0
Betriebshale-Fas. Ost 71,2		765,4	124,0	6,0	- 1,88	4,6	70	0,2	0,0	0.0	-3,4	-30	-1,7	0,0	0'0	1,9	4.5	1,5
Gemis chkühler BHKW 2 87,0		740,7		0	-88,4	4,6	-18,2	-23	0'0	0'0	5	32	50 7	0.0	0,0	6,1	4.8	653
Rührwerk Fermenter IV 79,0		735,1		3,0	-683	4,6	4.2	66	0,0	0,0	1,0	er er	-1,7	4,8	4.8	1,9	4.9	-5,5
Gasverdichter 86,0		743,5		3,0	- 4'89	4.6	-18,81-	-3,5	0'0	2,1	42	-3,2	47	0'0	0,0	6,1	553	-6,0
BHKW Zuluff 1 85,0		746,4	1.7	111	68,5	4,6	0.2	-22	0'0	0,0	4,4	13.1	117	0,0	0,0	6,	-5,5	1,9
BHKW Zuluff 2 65,0		747,9	0,1	6,0	88,5	4,6	-0,2	-22	0,0	0,0	4,4	13.	1,7	0,0	0,0	6.	-5,6	1,9
BGHVA 2-Fas. Ost 67,0		547,7		0'9	8,39	4,6	-13,9	9'0-	0'0	1,1	4,7	30	9/1-	0,0	0,0	6,	60	-6,3
BGMKOA It-Zuluftgitter 1 78,0		553,2		-	65,8	4,6	17.71	17	0'0	0'0	-5,2	e e	777	0'0	0.0	1,9	-6,4	6.9
BGMKOA ILZuluftgitter 2 78,0		554,5		6,0	6,39	4,6	17.7	7	0,0	0,0	-52	7	-1,7	0,0	0,0	1,9	-6.4	-8,9
BGSW-Fas, Nord		574,1		6,0	- 2'99	4,6	11,2	7,0-	0,0	0.0	-6,2	7	17	0'0	0,0	6,	4.7-	6'1-
Betriebshale-Fas. Nord 69,6		9'992	ω	0'9	- 68,7	4,6	-10,2	-0,2	0,0	0,0	-8,2	Ę.	-1,7	0.0	0,0	1,9	-9,4	-9,9
BGHVA 1-Fas, Ost 86,4	_	550,2	-	6,0	86,8		11,6	-0,7	0,0	0,0	-10,2	-30	9	0'0	0,0	6,1	-11,2	-11,8

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

Quelle	IN.	w	loder S	2	Adiv	Agr	Abar	Astm	ADI	dLrefl	S.	Cmet,T	Cmet,N	₫.w.T	d_w,N	ZR	5	2
	dB(A)	ш	m,m²	땀	B	留	甲	田田	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	dB(A)	dB(A)	8	땅	品	gp	8	dB(A)	dB(A)
Sticksbffeinheit Wärmespeicher	80,0	720,3	ADDS	3,0	1,88,1	4.6	9'61-	4.7	0,0	0'0	-14,0	3,2	11	0,0	0'0	1.9	15,3	-15,8
BHKW Abluft 1	70,0	755,7	1,0	6,0	988	4,6	-16,4	6'0-	0'0	0'0	-14,4	ę,	-1,7	0'0	0,0	6	-15,6	-16,1
BHKW Abluft 2	0,07	754,4	1,0	6,0	-68,5	4,6	-16,4	60	0'0	0'0	-14,4	Ę.	-1,7	0'0	0,0	1,9	-15,6	-16,1
Rührwerk Fermenter I	79,0	702,6		3,0	6'29	4,6	-19,6	42	0.0	0,0	-143	ξį	-1,7	4.8	4,8	4,9	-20,2	-20,7
Rührwerk Fermenter II	79,0	727,6		3,0	-68,2	4,6	-19,7	4.4	0.0	0'0	-14,9	ē	1,7	4.8	4,8	6,	-20,8	20,00
Rührwerk Fermenter I	79,0	785,3		3,0	-68,9	4,6	-18,7	4,7	0'0	0'0	-15,9	÷7	1,7	4,8	4.8	1,9	-21,8	-22,3
BGHVA 2, E-Raum-Fas. Nord; Tur	53,2	551,9	2,0	6,0	8,38	4,6	-16,9	1,1	0'0	0'0	-292	7	47	0'0	0,0	6,1	-30,4	-30,9
BGHVA 1, E-Raum-Fas. Nord; Tur	53,2	554,4	2,0	6,0	-86,99	4,6	-17,8	1,1	0'0	0,0	-30,2	Ę,	1,7	0,0	0,0	1,9	4.16	-31,9
BGHVA 2, E-Raum-Fas. West	26,9	549,9	10,6	6,0	899	4.8	-0'3	8,0-	0,0	0,0	-38,5	200	9,1	0,0	0,0	6.	-38,6	1,04
BGHVA 2, E-Raum-Dach	27,2	820,9	11,2	3,0	-86,8	4,5	9'0-	7,0-	0'0	0'0	41,4	-2,9	9	0,0	0,0	o) —	42,4	43,0
BGHVA 1, E-Raum-Dach	27,2	553,3	11,2	3,0	6,58	4,5	-0,5	8,0	0'0		41,4	-2,9	9/1-	0'0	0.0	1,9	42,4	43,0
BGHVA 1, E-Raum-Fas. West	26,9	552,3	10,6	6,0	-85,8	4,6	-11,0	7'0-	0,0		47,5	3,0	9,7	0,0	0,0	1,9	-48,5	1,84
BGHVA 2, E-Raum-Fas. Ost	27,0	552,0	10,8	6,0	-86,8	4,6	-13,8	9'0-	0.0		48,1	-30	9,1	0'0	0,0	60,	49,1	49,7
BGHVA 2, E-Raum-Fas. Nord	29,9	551,9	21,1	6,0	-65,8	4,6	-13,0	9'0-	0.0		48,1	-30	9,1	0.0	0,0	1,9	49,2	49.7
BGHVA 1, E-Raum-Fas. Nord	29,9	554,4	21,1	6,0	-86,9	4.6	-13,5	9'0-	0'0	0'0	48,6	-30	9,7	0,0	0,0	1,9	-49,6	-50,2
BGHVA 1, E-Raum-Fas. Ost	27,0	554,4	10,8	6,0	-86,99	4,6	-13,7	-0,7	0'0	0,0	-51,7	-3.0	9,1	0,0	0,0	£.	-52,8	-53,4
Schlepper Verdichten Silage Maisernte	107,0	718,6	3390,8	3,0	-88,1	4.6	60-	-28	0,0	0,3	33,7	-32	1,7	9'0-	5	0.8	30,8	The second
Teleskophder Verladung Kartoffelager	107,0	611,5	1927,7	3,0	-86,7	4.6	89	-2,5	0'0	6,	31,2	32	-1,7	15		6,4	24,9	
Radlader Beschickung Anlage	107,0	734,9	4882,2	3,0	-68,3	4,6	-0,8	30	0'0	0,4	33,6	-32	-1,7	0'6-		1,9	23,3	
Radlader Beschickung Anlage	107,0	702,2	4758,7	3,0	6'79-	4,6	6,7	-29	0,0	0.0	32,6	3,2	-1,7	-9,0		6,	22,3	
IFz Abkippen Maisernte	87,4	718,6	3390,8	3,0	-89	4.6	80	-25	0'0	0,2	14,6	32	7,1	8,0		0,8	20,2	
Fz Fahrspur Maisernte	87,8	768,6	301,3	3,0	-68,7	4,6	98	-27	0'0	0,7	1,6	-32	60 17	8,0		8,0	17,2	
Lkw/Fz Fahrspur Kartoffeliagerhalle	91,1	661,4	847,9	3,0	-67.4	4,6	-7,3	-20	0'0	2,2	14,9	-32	17	1,0		9'0	13,3	
Lkw/Fz Pumpe Anl. Gülle	109,6	781,9		3,0	688	4,6	-7.5	3,5	0'0	0,0	28,2	32	60, T	-16,8		0,0	8,1	
Lkw/Fz Ablippen Mist	87,4	789,7	257,4	3,0	6,88	4.6	-0,1	-28	0,0	0,0	13,9	32	60 T	15		2,0	7,6	
Lkw/IFz Fahrspur Anl. Mist	89,1	759,0	404,2	3,0	989	4.6	er.	-2,8	0'0	9,0	13,6	32	00 T	25		2,0	7,3	
Lkw/IFz Fahrspur Ant. Mist	91,4	684,3	684,2	3,0	1.73	4,6	83	-21	0'0	9'0	12,3	32	-1,7	15		2,0	6,1	
Lkw/lFz Fahrspur Ant Gülle	89,6	763,9	454,6	3,0	-68,7	4.6	in.	-26	0,0	0,4	12,0	-3,2	0 0	-6,0		2,4	5,1	
IFz Stellgeräusch Waage Maisernte	84,8	737,0	67,2	3,0	-88,3	4,6	-15,0	1.7	0.0	0'0	F	32	1,00	8,0		0,8	3,7	
Lkw/Fz Stellgeräusch Waage Anl. Mist	87,8	638,8	63,6	3,0	1.73	4,6	-82	-1,8	0.0	0,0	9,1	-3,2	-4,7	15		2,0	2,9	
Lkw/IFz Pumpe Anl. Gülle	109,6	963,6		3,0	-67,4	4.6	-10,3	-28	0'0	0'0	27,5	-3,2	47	-228	25	0'0	5,	

Teilbeurteilungspegel nach TA Lärm Situation Regelbetrieb mit Maisemte

	3	4	(B(A)	
-	1	0,0	e no	1
4.6 -1		c		-
		710	300	
		2,4		
		2,4	4 4 4	
3,0 -68,3	749,4 3,0 -67,7 -4,6 -9,2 -1,9 0,0 0,7 11,9 -3,2 -1,7	749,4 3,0 -67,7 -4,6 -9,2 -1,9 0,0 0,7 11,9 -3,2 -1,7 -12,0	749,4 3,0 -67,7 -4,6 -9,2 -1,9 0,0 0,7 11,9 -3,2 -1,7 -12,0	749,4 3,0 -87,7 -4,6 -9,2 -1,9 0,0 0,7 11,9 -3,2 -1,7 -12,0 0,0 67.2 3.0 -88.3 -4.6 -15.0 -1.7 0.0 0.0 1.2 -3.2 -1.8 -5.1 2.0
3,0 68,3	11- 70- 6'11 1'0 0'0 6'1- 7'0- 0'- 1'10- 0'0	11- 20- 00 00 Et 03- 00 00 00	071- 11- 20- 01- 10- 01- 11- 11- 01- 01- 01- 01- 0	30 -683 -46 -450 -17 0.0 0.0 1.2 -32 -18 -51 2.0
	and the same of the same of	000000000000000000000000000000000000000	100000000000000000000000000000000000000	46 -150 -17 00 00 12 -32 -18 -51 20
7 7	10 00 00 00 00	000000000000000000000000000000000000000	100000000000000000000000000000000000000	-15.0 -1.7 0.0 0.0 1.2 -3.2 -1.8 -5.1 2.0
7 -	/'- 7'5- E'11 /'0 0'0	7,1- 24- 0,0 0,0	0,0 0,0 11,9 -3,2 -1,0 0,0	0,0 0,7 11,9 -3,2 -1,7 -12,0 0,0
-	0,7 11,9 -3,2 -1,7	0,7 11,9 -32 -1,7	0,7 11,9 -3,2 -1,7 -12,0	0,0 11,9 -3,2 -4,7 -12,0 0,0
17.	11,9 -3,2 -1,7	11,9 -3,2 -1,7 -12,0	11,9 -3,2 -1,7 -12,0	11,9 -3,2 -1,7 -12,0 0,0 12 -3,2 -1,8 -5,1 2.0
-1,5	dB dB -3,2 -1,7	32 47	dB dB dB dB -32 -1,7 -120	-32 -1,7 -120 0,0 -32 -18 -51 20
-1,7 0,0 0,0	# F	dB dB -1,7 -120	dB dB dB -1,7 -12,0	-1,7 -12,0 0,0
7,0 0,0 8,1	BB -1,7	dB dB -1,7 -120	dB dB dB -1,7 -12,0	-120 0,0
E'11 0'0 0'1-		450 -120	dB dB -120	0'0
7'5- 6'11 7'0 0'0 6'1-		쁑	9	0,0

Anhang 7: Beurteilungspegel - Situation Regelbetrieb mit Maisernte

Beurteilungspegel nach TALärm Situation Regelbetrieb mit Maisemte

IO-Nr.		Objektnummer
Immissionsort		Bezeichnung des Immissionsortes
Nutznua		Gebietsnutzung
SW		Sbotwerk
HR		Fassadenausrichtung
RW.T	dB(A)	Immissionshothwert Tag
RW,N	dB(A)	Immissionshichtwert Nacht
5	dB(A)	Beurteilungspegel Tag
25	dB(A)	Beurteilungspegel Nacht
dir.	dB(A)	Differenz zwischen Beurteilungspegel und Richtwert in Zeitbereich LrT
dL'N	dB(A)	Differenz zwischen Beurteilungspegel und Richtwert in Zeitbereich LrN
RW.Tmax	dB(A)	Immissionsrichtwert für Maximalpegel Tag
RW,Nmax	dB(A)	Immissionsrichtwert für Maximalpegel Nacht
LTmax	dB(A)	Maximalpegel Tag
LNMax	dB(A)	Maximalpedel Nacht
dLTmax	dB(A)	Differenz zwischen Beurteilungspegel und Richtwert in Zeitbereich LT, max
dLNmax	dB(A)	Differenz zwischen Beurteilungspegel und Richtwert in Zeitbereich LN,max

Beurteilungspegel nach TALärm Situation Regelbetrieb mit Maisemte

ILNmax	dB(A)						
dLTmax dLNmax	dB(A)	46	46	46	46	43	43
LNmax	dB(A)				- 0		
LTmax	dB(A)	39	39	38	39	42	42
W,Nmax	Œ(A)	90	90	90	90	9	60
dLrN RW,Tmax RW,Nmax LTmax LNmax	dB(A)	88	85	885	85	88	82
den i	dB(A)	17	-10	-10	-10	φ	7
dLrī	(A)(B)	-22	22	22	22	-18	-19
3	dB(A)	29	30	30	30	32	33
Li	Œ(A)	33	33	33	33	36	38
RW,T RW,N	dB(A)	40	40	40	40	04	40
RW,T	(A)B	52	55	55	58	58	55
Ħ.		MAN	NW		1115		MES
SW		EG	1.06	EG	1.06	EG	1.06
Nutzung		WS	WS	WS	WS	S.M.	WS
IO-Nr. Immissionsort		Edith-Stein-Ring 37	Edith-Stein-Ring 37	Pater-Augustin-Straße	Pater-Augustin-Straße	mögliche Baugrenze	mögliche Baugrenze
IO-Nr.		11.1	10	02	1500	711	03

147. Flächennutzungsplanänderung der Samtgemeinde Sögel

Bebauungsplan Nr. 38 der Gemeinde Börger

- Immissionsschutztechnischer Bericht (Geruch, Ammoniak, Stickstoff) -

Immissionsschutztechnischer Bericht Nr. GS23110.1+2/01

über die geruchstechnische Untersuchung sowie die Beurteilung der Ammoniakimmissionen zur 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel sowie der Aufstellung des Bebauungsplans Nr. 38 "Biogasanlage, 1. Erweiterung" der Gemeinde Börger

Auftraggeber Gemeinde Börger Alter Schulhof 1 26904 Börger **Bearbeiter**Dipl.-Ing. Beke Brinkmann

Berichtsdatum 25.01.2024

Fides Immissionsschutz & Umweltgutachter GmbH Kiefernstr. 14-16, 49808 Lingen

0591 - 14 20 35 2-0 | 0591 - 14 20 35 2-9 (Fax) | info@fides-ingenieure.de

Seite 2 zum Bericht Nr. GS23110.1+2/01

FIDES
Immissionsschutz &
Umweltgutachter

Zusammenfassung der Ergebnisse

Die Samtgemeinde Sögel plant die 147. Änderung des Flächennutzungsplanes, die Gemeinde Börger plant die Aufstellung des vorhabenbezogenen Bebauungsplanes Nr. 38 "Biogasanlage, 1. Erweiterung" in Börger. Die Betreiber der Biogasanlagen im bzw. angrenzend zum Plangebiet möchten ihre Biogasproduktion und die Fernwärmeversorgung ausweiten und das Biogas zu Biomethan aufbereiten. Für diesen Zweck soll die bestehende Biogasanlage im Gebiet u. a. um zusätzliche Behälter und eine Biomethanaufbereitungsanlage erweitert werden. Des Weiteren sollen innerhalb des Plangebietes eine weitere Biogasanlage, eine Kartoffellagerhalle und eine Aufbereitungsanlage errichtet werden. Das Gas soll anschließend in das bestehende Gasnetz des regionalen Netzbetreibers eingespeist und dort als grundlastfähiger und CO₂ neutraler Energieträger genutzt werden. Eine Übersichtskarte ist in der Anlage 1 dargestellt.

Für das Bauleitplanverfahren soll eine immissionsschutztechnische Untersuchung zur Ermittlung der Geruchsimmissionssituation und der Gesamtzusatzbelastung an Ammoniakkonzentration und Stickstoffdeposition erfolgen.

Gemäß Vorgabe der Gemeinde Börger soll sich die Geruchsimmissionssituation an den südlich gelegenen vorhandenen Wohngebieten sowie den geplanten Entwicklungsflächen der Gemeinde durch die Planungen innerhalb des Bebauungsplanes nicht verändern.

Mittels Ausbreitungsrechnung wurde anhand der ermittelten Geruchsemissionen die Gesamtzusatzbelastung an Geruchsimmissionen berechnet und als 2 %-Isolinie zusammen mit dem 600 m Radius um den Betriebsstandort in der Anlage 3 dargestellt. Entsprechend werden alle Immissionspunkte innerhalb des 600 m Radius und der 2 %-Isolinie betrachtet.

In der Anlage 4 ist die Gesamtzusatzbelastung an Geruchsimmissionen für das Plangebiet dargestellt. Wie das Ergebnis zeigt, beträgt die Gesamtzusatzbelastung an Geruchsimmissionen an den südlich gelegenen Entwicklungsgebieten der Gemeinde Börger sowie dem vorhandenen Wohngebiet maximal 1 % der Jahresstunden.

Bei Berücksichtigung der Vorbelastung führen die Planungen innerhalb des Plangebietes durch die Überlagerung mit Geruchsfahnen der vorhandenen benachbarten Betriebe zu keiner Veränderung der vorhandenen Gesamtbelastung an Geruchsimmissionen in den südlichen Entwicklungsgebieten

Seite 3 zum Bericht Nr. GS23110.1+2/01

sowie vorhandenen Wohngebieten. Dies zeigt der Vergleich der ermittelten Gesamtbelastungen an Geruchsimmissionen.

Bei der Ermittlung der Gesamtbelastung an Geruchsimmissionen werden alle Betriebe berücksichtigt, die auf die Immissionspunkte im Beurteilungsraum einwirken. Die Gesamtbelastung an Geruchsimmissionen ist in der Anlage 5 sowohl für die derzeit genehmigte als auch für die geplante Situation dargestellt. In der geplanten Situation wurden die Planungen innerhalb des Bebauungsplanes sowie die Planungen der Anlage der benachbarten Biogasanlage berücksichtigt.

Wie die Ergebnisse zeigen, wird der im Anhang 7 der TA Luft für Wohn- und Mischgebiete angegebene maßgebliche Immissionswert für die Gesamtbelastung an Geruchsimmissionen von 10 % der Jahresstunden an den bestehenden Wohngebieten sowie an den südlich gelegenen Entwicklungsflächen für Wohnen eingehalten.

An den südwestlich gelegenen, für Wohngebiete vorgesehenen Entwicklungsflächen der Gemeinde Börger beträgt die Gesamtbelastung an Geruchsimmissionen maximal 13 % der Jahresstunden.

In den Auslegungshinweisen/Kommentar zum Anhang 7 der TA Luft 2021 wird beschrieben, dass in begründeten Einzelfällen - entsprechend Nr. 3.1 Abs. 5 Anhang 7 TA Luft - die Festlegung von Zwischenwerten zwischen den Nutzungsbereichen möglich ist. Der Übergangsbereich sollte aber räumlich eindeutig begrenzt werden: Die nachfolgende Tabelle zeigt die Zwischenwerte.

Tabelle 1 Zwischenwerte für den Übergangsbereich verschiedener Nutzungen

Anlagentyp	Übergangsbereich	Immissionswert
Tierhaltungsanlagen	Dorfgebiet - Außenbereich	0,15 < IW ≤ 0,20
Tierhaltungsanlagen	Wohn-/Mischgebiet - Dorfgebiet	0,10 < IW < 0,15
Tierhaltungsanlagen	Wohn-/Mischgebiet - Außenbereich	0,10 < IW < 0,15
Gewerbe-/Industrieanlagen	Wohn-/Mischgebiet - Gewerbe-/Industriegebiet	0,10 < IW < 0,15
Gewerbe-/Industrieanlagen	Wohn-/Mischgebiete (einschließlich Dorfgebiete) - Außenbereich	0,10 < IW < 0,15

Seite 4 zum Bericht Nr. GS23110.1+2/01

Im Übergangsbereich von Wohngebieten zum Außenbereich mit Tierhaltungsanlagen können Zwischenwerte von bis zu 14 % der Jahresstunden als angemessen betrachtet werden. Mit einer ermittelten Gesamtbelastung an Geruchsimmissionen von maximal 13 % der Jahresstunden wäre eine Ausweisung von Wohngebietsflächen im Bereich der Entwicklungsflächen der Gemeinde Börger grundsätzlich möglich.

Der im Anhang 7 der TA Luft für Gewerbe- und Industriegebiete angegebene maßgebliche Immissionswert für die Gesamtbelastung an Geruchsimmissionen von 15 % der Jahresstunden (bei zulässigem Wohnen im Gewerbegebiet) wird im südlich der geplanten Anlagen gelegenen Gewerbegebiet eingehalten.

In der Anlage 5.3 ist die Differenz der Gesamtbelastung an Geruchsimmissionen zwischen der geplanten und der genehmigten Situation dargestellt. Wie das Ergebnis zeigt, verändert sich die Immissionssituation durch die Planungen an den südlichen Entwicklungsflächen der Gemeinde Börger nicht.

Innerhalb des Bebauungsplangebietes befinden sich unmittelbar benachbart die vorhandenen und geplanten Biogasanlagen sowie die Masthähnchenställe des Betriebes Wöste. Die für die lokalen Geruchsimmissionen innerhalb des Bebauungsplangebietes bestimmenden Quellen sind die Masthähnchenställe sowie auf den Biogasanlagen insbesondere die Mistlagerflächen. Im Wesentlichen soll Geflügelmist als Inputstoff gelagert werden. Da die Geruchsart der Geflügelmistlagerung und der Mastgeflügelhaltung vergleichbar ist, können die innerhalb des Plangebietes auftretenden Gerüche nicht den einzelnen Anlagen zugeordnet werden, da diese nicht klar unterscheidbar sind. Die in der Geflügelhaltung oder der Biogaserzeugung auf den Anlagen tätigen Arbeitnehmer sind somit während ihrer Arbeitszeit den vergleichbaren Gerüchen aus der eigenen Tätigkeit und aus den benachbarten Anlagen ausgesetzt. Da keine eindeutige Unterscheidbarkeit der Gerüche gegeben ist, kann davon ausgegangen werden, dass durch Geruchsimmissionen der benachbarten Anlagen keine zusätzlichen Belästigungen der Arbeitnehmer als durch die eigenen arbeitsplatzbezogenen Tätigkeiten hervorgerufen werden.

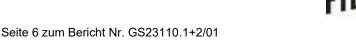
Somit sind aus geruchstechnischer Sicht keine unzulässigen Beeinträchtigungen der Nachbarschaft durch die Aufstellung der 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel sowie des Bebauungsplanes Nr. 38 " Biogasanlage, 1. Erweiterung" der Gemeinde Börger mit der

Seite 5 zum Bericht Nr. GS23110.1+2/01

in diesem Bericht erläuterten Errichtung und dem Betrieb von Biogasanlagen sowie einer Biogasaufbereitungsanlage und einer Biomethaneinspeisung zu erwarten.

Anhand der aus den Anlagenteilen ermittelten Ammoniakemissionen wurde die Gesamtzusatzbelastung an Ammoniakkonzentration und Stickstoffdeposition berechnet.

Im Rahmen der Untersuchung für die Bauleitplanung wurden die Ammoniakemissionen der Anlagen innerhalb des Plangebietes für die Ermittlung der Gesamtzusatzbelastung an Ammoniak- und Stickstoffimmissionen berücksichtigt. Im Zuge der Genehmigungsverfahren für die einzelnen Anlagen sind die Ammoniakimmissionen ausschließlich aus den Emissionen der einzelnen Anlage zu ermitteln.


In der Anlage 6 ist die Gesamtzusatzbelastung an Ammoniakkonzentration und Stickstoffdeposition dargestellt. Die Darstellung erfolgt als Isolinie der Ammoniakkonzentration von 2 μ g/m³ sowie als Isolinie der Stickstoffdeposition von 5 kg/(ha·a). Die Berechnung der Stickstoffdeposition erfolgt für Waldflächen unter Berücksichtigung der Depositionsgeschwindigkeit von v_d = 0,02 m/s.

Sofern im Bereich der dargestellten 2 µg/m³-Isolinie keine empfindlichen Pflanzen und Ökosysteme vorliegen, liegt gemäß TA Luft kein Anhaltspunkt auf Vorliegen erheblicher Nachteile durch Schädigung empfindlicher Pflanzen und Ökosysteme aufgrund der Einwirkung von Ammoniak vor.

Sofern im Bereich der dargestellten 5 kg/(ha·a)-Isolinie keine empfindlichen Pflanzen und Ökosysteme vorliegen, ist gemäß TA Luft keine weitere Beurteilung der Stickstoffdeposition erforderlich.

Innerhalb der berechneten Isolinien der Ammoniakkonzentration und Stickstoffdeposition befinden sich keine Waldflächen oder sonstige ausgewiesene empfindliche Pflanzen und Ökosysteme.

In der Anlage 7 ist der Einwirkbereich auf Gebiete von gemeinschaftlicher Bedeutung (FFH-Gebiete), hervorgerufen durch die Zusatzbelastung an Stickstoffdeposition (in diesem Fall entspricht die Zusatzbelastung = der Gesamtzusatzbelastung) für die Depositionsgeschwindigkeiten v_d = 0,02 m/s dargestellt.

Umweltgutachter

Innerhalb der Isolinien der Stickstoffdeposition befinden sich keine ausgewiesenen Gebiete gemeinschaftlicher Bedeutung.

Eine weitergehende naturschutzfachliche Beurteilung der Ergebnisse ist nicht Bestandteil dieser Untersuchung

Der nachstehende immissionsschutztechnische Bericht wurde nach bestem Wissen und Gewissen mit größter Sorgfalt erstellt und besteht aus 33 Seiten und 8 Anlagen (Gesamtseitenzahl: 100 Seiten).

Lingen, den 25.01.2024 BN/Co

Fides Immissionsschutz & Umweltgutachter GmbH

geprüft durch: Dipl.-Ing. Thomas Drosten

erstellt durch: i. V. Dipl.-Ing. Beke Brinkmann

Akkreditierung nach DIN EN ISO/IEC 17025:2018 für die Ermittlung der Emissionen und Immissionen von Gerüchen sowie Immissionsprognosen nach TA Luft und GIRL Bekannt gegebene Messstelle nach § 29b BlmSchG für die Ermittlung der Emissionen und Immissionen von Gerüchen (Nr. IST398)

Seite 7 zum Bericht Nr. GS23110.1+2/01

INHALTSVERZEICHNIS

			Seite
1	Au	fgabenstellung	9
	1.1	Allgemeine Angaben zum Vorhaben und zum Ziel der Immissionsprognose	9
	1.2	Örtliche Verhältnisse	9
	1.3	Anlagenbeschreibung	10
2	Bei	urteilungsgrundlagen	12
	2.1	Gerüche	12
3	Em	issionsermittlung	15
	3.1	Geruchsemissionen	15
	3.2	Ammoniakemissionen	20
4	Au	sbreitungsrechnung	23
	4.1	Quellparameter	23
	4.2	Deposition	24
	4.3	Meteorologische Daten	25
	4.4	Rechengebiet	26
	4.5	Rauigkeitslänge	26
	4.6	Komplexes Gelände	26
	4.7	Statistische Sicherheit	27
	4.8	Geruchsstoffauswertung	27
5	Erg	gebnisse der Ausbreitungsrechnung	28
	5.1	Geruchsimmissionen	28
	5.2	Ammoniak- und Stickstoffimmissionen	30
6	Lite	eraturverzeichnis	32
7	Anl	agen	33

Seite 8 zum Bericht Nr. GS23110.1+2/01

TABELLENVERZEICHNIS

Tabelle 1 Zwischenwerte für den Übergangsbereich verschiedener Nutzungen	3
Tabelle 2 Immissionswerte [2]	12
Tabelle 3 Geruchsemissionen der Biogasanlagen innerhalb des Bebauungsplanes	19
Tabelle 4 Geruchsemissionen der benachbarten Biogasanlage	19
Tabelle 5 Ammoniakemissionen der Biogas- und Biomethaneinspeiseanlage	21
Tabelle 6 Zwischenwerte für den Übergangsbereich verschiedener Nutzungen	29

ÄNDERUNGSVERZEICHNIS/BERICHTSHISTORIE

Bericht Nr.	Datum	Änderungen/Hinweise
G23110.1+2/01	25.01.2024	-

1 Aufgabenstellung

1.1 Allgemeine Angaben zum Vorhaben und zum Ziel der Immissionsprognose

Die Samtgemeinde Sögel plant die 147. Änderung des Flächennutzungsplanes, die Gemeinde Börger plant die Aufstellung des vorhabenbezogenen Bebauungsplanes Nr. 38 "Biogasanlage, 1. Erweiterung" in Börger. Die Betreiber der Biogasanlagen im bzw. angrenzend zum Plangebiet möchten ihre Biogasproduktion und die Fernwärmeversorgung ausweiten und das Biogas zu Biomethan aufbereiten. Für diesen Zweck soll die bestehende Biogasanlage im Gebiet u. a. um zusätzliche Behälter und eine Biomethanaufbereitungsanlage erweitert werden. Des Weiteren sollen innerhalb des Plangebietes eine weitere Biogasanlage, eine Kartoffellagerhalle und eine Aufbereitungsanlage errichtet werden. Das Gas soll anschließend in das bestehende Gasnetz des regionalen Netzbetreibers eingespeist und dort als grundlastfähiger und CO₂ neutraler Energieträger genutzt werden. Eine Übersichtskarte ist in der Anlage 1 dargestellt.

Für das Bauleitplanverfahren soll eine immissionsschutztechnische Untersuchung zur Ermittlung der Geruchsimmissionssituation und der Gesamtzusatzbelastung an Ammoniakkonzentration und Stickstoffdeposition erfolgen.

In dieser Untersuchung wird die Vorgehensweise bei der Ermittlung der Emissionen und Immissionen erläutert. Dabei werden die Anforderungen an Immissionsprognosen gemäß den Vorgaben der VDI-Richtlinie 3783, Blatt 13 [1] berücksichtigt (Anlage 7).

1.2 Örtliche Verhältnisse

Die örtlichen Gegebenheiten wurden anhand eines Ortstermins aufgenommen. Innerhalb des Plangebietes befindet sich eine bestehende Biogasanlage mit Silagelagerflächen, Gär- und Lagerbehältern und Betriebsgebäuden mit dem vorhandenen Feststoffdosierer und Blockheizkraftwerk (BHKW). Im unmittelbaren Umfeld der Biogasanlage befinden sich Stallanlagen des Betriebes Wöste. Eine weitere Biogasanlage liegt westlich der Breddenberger Straße. Südwestlich in einer Entfernung von ca. 750 m beginnt die Wohnbebauung von Börger. Vorgelagert sind weitere Entwicklungsflächen für mögliche Wohn-, Gewerbe-, oder Industriegebiete der Gemeinde Börger. Im direkten Umfeld befinden sich landwirtschaftlich genutzte Flächen. Dabei handelt es sich vorwiegend um ebene Flächen, deren Höhenunterschiede für die Ausbreitungsrechnung nicht relevant sind.

Seite 10 zum Bericht Nr. GS23110.1+2/01

FIDES
Immissionsschutz &
Umweltgutachter

1.3 Anlagenbeschreibung

In der bestehenden Biogasanlage werden derzeit überwiegend Maissilage und weitere nachwachsende Rohstoffe sowie Gülle und Mist zur Biogaserzeugung anaerob vergoren. Das erzeugte Biogas wird zur Wärme- und Stromproduktion in einer BHKW-Anlage verfeuert.

Die Silagen werden auf den Substratlagerplatten unter Folie einsiliert gelagert und täglich über ein Feststoffeintragssystem in den Fermenter eingebracht. Die übrigen nachwachsenden Rohstoffe werden ebenfalls auf den Substratlagerplatten gelagert, der Mist wird auf der Festmistlagerplatte der anliegenden Stallanlage gelagert und täglich nach Bedarf (just in time) zu der anliegenden Biogasanlage gebracht und dann über das Feststoffeintragssystem in den Fermenter eingebracht.

Sämtliche der Anlage zugeführte Gülle wird in den Güllevorlagebehälter der Anlage eingebracht, dort zwischengelagert und von der Anlagensteuerung geregelt über ein geschlossenes Pumpensystem in den Fermenter gepumpt. Die Substrate werden nach der Hauptvergärung in einem Fermenter anschließend zur Nachvergärung in den Nachgärer gepumpt.

Die bei der Vergärung entstehenden Gärreste werden derzeit in 1 Gärrestlagerbehälter gelagert. Ein Teil der Gärreste wird zur bedarfsgerechten ackerbaulichen Verwertung in der Düngeperiode von Tankfahrzeugen abgeholt. Das Biogas wird zur Verfeuerung in der BHKW-Anlage aufbereitet (getrocknet und entschwefelt) und dann dem Verbrennungsmotor des BHKW zugeführt.

Zukünftig soll die vorhandene Biogasanlage in den Ausbau der Anlage integriert werden. Zudem wird eine weitere Biogasanlage sowie eine Biogasaufbereitungs- und einspeiseanlage errichtet.

Das Biogas soll in beiden zukünftigen Anlagen aus Wirtschaftsdünger und NaWaRo erzeugt werden. Je Anlage sollen neben einer Maisinputmenge von ca. 7.200 t/a Wirtschaftsdünger in Form von Gülle und Mist von ca. 38.900 t/a eingesetzt werden.

Der Mist wird zukünftig in einer Substratlagerhalle angeliefert und gelagert. Die Halle ist überdacht und dreiseitig geschlossen geplant.

Seite 11 zum Bericht Nr. GS23110.1+2/01

Ein Teil des Biogases soll weiterhin zur Strom- und Wärmeproduktion in dem vorhandenen BHKW eingesetzt werden. Der Großteil des erzeugten Biogases soll in einer Gasaufbereitungsanlage auf Erdgasqualität aufbereitet und anschließend über eine Verdichterstation in das öffentliche Erdgasnetz eingespeist werden.

Auf den beiden Anlagen soll jeweils eine Gärresttrocknung installiert und betrieben werden.

Die getrockneten Gärreste werden regelmäßig per LKW abgefahren. Die flüssigen Gärreste werden am Abtankplatz in den Düngeperioden abgefahren.

2 Beurteilungsgrundlagen

Begriffsbestimmungen

Gemäß TA Luft [2] kennzeichnen die Immissionskenngrößen die Höhe der Belastung durch einen luftverunreinigenden Stoff. Dabei sind Vorbelastung, Zusatzbelastung, Gesamtzusatzbelastung und Gesamtbelastung zu unterscheiden.

Diese werden in der TA Luft [2] wie folgt definiert:

- Vorbelastung ist die vorhandene Belastung
- **Zusatzbelastung** ist der Immissionsbeitrag des Vorhabens
- Gesamtzusatzbelastung ist der Immissionsbeitrag, der durch die gesamte Anlage hervorgerufen wird. Bei Neugenehmigungen entspricht die Zusatzbelastung der Gesamtzusatzbelastung.
- Gesamtbelastung ist die Summe der Vorbelastung und der Zusatzbelastung

2.1 Gerüche

Geruchsimmissionen werden anhand des Anhangs 7 der TA Luft [2] ermittelt und beurteilt. Eine Geruchsimmission ist zu beurteilen, wenn sie nach ihrer Herkunft aus Anlagen erkennbar, d. h. abgrenzbar gegenüber Gerüchen aus dem Kraftfahrzeugverkehr, dem Hausbrandbereich, der Vegetation, landwirtschaftlichen Düngemaßnahmen oder ähnlichem ist. Als erhebliche Belästigung gilt eine Geruchsimmission dann, wenn die in der nachfolgenden Tabelle angegebenen Immissionswerte überschritten werden. Die Immissionswerte werden als relative flächenbezogene Häufigkeiten der Geruchsstunden bezogen auf ein Jahr angegeben.

Tabelle 2 Immissionswerte [2]

Wohn-/Mischgebiete	Gewerbe-/Industriegebiete	Dorfgebiete	
0,10	0,15	0,15	

Sonstige Gebiete, in denen sich Personen nicht nur vorübergehend aufhalten, sind entsprechend den Grundsätzen des Planungsrechtes den Nutzungsgebieten in der o. a. Tabelle zuzuordnen.

Bei der Geruchsbeurteilung im Außenbereich ist es unter Prüfung der speziellen Randbedingungen des Einzelfalles möglich, Werte von 0,20 (Regelfall) bis 0,25 (begründete Ausnahme) für Tierhaltungsgerüche heranzuziehen [2].

Entsprechend kann für den landwirtschaftlich geprägten Außenbereich ein Immissionswert von 0,25 herangezogen werden. Bei Wohnhäusern mit Tierhaltung bleibt die eigene Tierhaltung unberücksichtigt.

Die Immissionswerte beziehen sich auf die Gesamtbelastung (IG) an Geruchsimmissionen, welche sich aus der Summe der vorhandenen Belastung (IV) und der Gesamtzusatzbelastung (IZ) der untersuchten Anlage ergibt:

$$IG = IV + IZ$$

Weiterhin ist unter Punkt 3.3 des Anhangs 7 der TA Luft [2] die Erheblichkeit der Immissionsbeiträge beschrieben. Demnach soll eine Genehmigung der Anlage auch bei Überschreitung der Immissionswerte nicht wegen der Geruchsimmissionen versagt werden, wenn der von dem zu beurteilenden Vorhaben zu erwartende Immissionsbeitrag (Kenngröße der Zusatzbelastung nach Nummer 4.5 des Anhangs 7) auf keiner Beurteilungsfläche, auf der sich Personen nicht nur vorübergehend aufhalten (vgl. Nummer 3.1 des Anhangs 7), den Wert 0,02 überschreitet. Bei Einhaltung dieses Wertes ist davon auszugehen, dass das Vorhaben die belästigende Wirkung der Vorbelastung nicht relevant erhöht (Irrelevanzkriterium). Die tierartspezifischen Gewichtungsfaktoren finden bei der Prüfung auf Irrelevanz keine Anwendung.

Änderungsgenehmigung kann der Immissionsbeitrag Vorhabens Im Fall einer des (Zusatzbelastung) negativ sein, d. h. der Immissionsbeitrag der gesamten Anlage (Gesamtzusatzbelastung) kann nach der Änderung auch niedriger als vor der Änderung sein [2].

In Fällen, in denen übermäßige Kumulationen durch bereits vorhandene Anlagen befürchtet werden, ist zusätzlich zu den erforderlichen Berechnungen auch die Gesamtbelastung im Istzustand in die Beurteilung einzubeziehen. D. h. es ist zu prüfen, ob bei der Vorbelastung noch ein zusätzlicher Beitrag von 0,02 toleriert werden kann. Eine Gesamtzusatzbelastung von 0,02 ist auch bei übermäßiger Kumulation als irrelevant anzusehen. Für nicht immissionsschutzrechtlich genehmigungsbedürftige Anlagen ist auch eine negative Zusatzbelastung bei übermäßiger

Seite 14 zum Bericht Nr. GS23110.1+2/01

Kumulation irrelevant, sofern die Anforderungen des § 22 Absatz 1 BlmSchG [3] eingehalten werden [2].

Das Beurteilungsgebiet wird gemäß den Vorgaben der VDI-Richtlinie 3886, Blatt 1 [4] festgelegt. Demnach ist das Beurteilungsgebiet aus einer Kreisfläche um den Emissionsschwerpunkt zu ermitteln, dessen Radius dem 30-fachen der Schornsteinhöhe bzw. mindestens 600 m entspricht [2]. Gemäß der VDI-Richtlinie 3886, Blatt 1 ist der Einwirkungsbereich zu ermitteln, in dem die Anlage eine relative Häufigkeit an Geruchsstunden von ≥ 0,02 (2 %-Isolinie) hervorruft. Somit sind mindestens alle im 600 m Radius gelegenen Immissionspunkte und alle Immissionspunkte innerhalb der 2 %-Isolinie zu berücksichtigen.

Anlage 1 zeigt eine Übersichtskarte mit Darstellung der umliegenden Immissionspunkte.

Seite 15 zum Bericht Nr. GS23110.1+2/01

3 Emissionsermittlung

3.1 Geruchsemissionen

Die zu erwartenden Geruchsemissionen der geplanten Anlagen werden anhand von Kenndaten zu Geruchsemissionen vergleichbarer Quellen ermittelt. Bei der westlich der Breddenberger Straße liegenden Biogasanlage wurden die derzeit in Planung befindlichen Änderungen in der Untersuchung für die Plansituation berücksichtigt. Für die genehmigte Situation liegen die Daten aus einer vorangegangenen Untersuchung vor.

Silagelagerung

Die Geruchsemissionen des nicht abgedeckten Entnahmebereiches der Silagemieten werden gemäß den Ansätzen zu Geruchsemissionsfaktoren des Landes Brandenburg [5] anhand eines flächenspezifischen Geruchsemissionsfaktors von 3 GE/(m³ x s) berechnet. Die emissionsrelevante Oberfläche beträgt je Anschnittfläche ca. 50 m², woraus ein Geruchsstoffstrom von 0,54 MGE/h (150 GE/s) resultiert.

Mistlagerung und Gärrestseparation innerhalb des Plangebietes

Der Mist sowie die Gärrestseparation sollen auf den beiden Anlagen innerhalb des Bebauungsplanes zukünftig innerhalb von 3-seitig umschlossenen Hallen zwischengelagert werden. Es wurde eine Lagerfläche für den Mist von 300 m² sowie 100 m² für separierte Gärreste in dieser Untersuchung berücksichtigt. Bei einem flächenspezifischen Geruchsstoffstrom gemäß den Ansätzen zu Geruchsemissionsfaktoren des Landes Brandenburg [5] von 3 GE/(m³ x s) und einer 3-seitig umschlossenen Halle (70 % Emissionsminderung) resultiert ein Geruchsstoffstrom für die Mistlagerung von ca. 0,97 MGE/h (270 GE/s) sowie für die Gärrestseparation von ca. 0,32 MGE/h (90 GE/s).

Mistlagerung benachbarte Biogasanlage

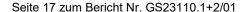
Bei der benachbarten Biogasanlage wurden die derzeit in Planung befindlichen Änderungen in dieser Untersuchung berücksichtigt. Die zukünftig geplante Lagerung von Mist und separierter Gülle soll zum Teil innerhalb einer 3-seitig umschlossenen Halle und zum Teil offen gelagert werden.

Bei einem flächenspezifischen Geruchsstoffstrom gemäß den Ansätzen zu Geruchsemissionsfaktoren des Landes Brandenburg [5] von 3 GE/(m³ x s) und einer offenen Lagerfläche von 100 m² resultiert eine Geruchsstoffstrom von 1,08 MGE/h (300 GE/s).

Für die Lagerfläche von 200 m² innerhalb der 3-seitig umschlossenen Halle (70 % Emissionsminderung) resultiert ein Geruchsstoffstrom von ca. 0,65 MGE/h (180 GE/s).

Feststoffdosierer innerhalb des Plangebietes

Die nachwachsenden Rohstoffe und der Mist werden über ein Feststoffeintragssystem in den Fermenter dosiert. Die Geruchsemissionen werden gemäß den Ansätzen Geruchsemissionsfaktoren des Landes Brandenburg [5] anhand eines flächenspezifischen Geruchsemissionsfaktors 9 GE/(m³ x s) für aufgelockertes von Material emissionsrelevanten Oberfläche von 48 m² (12 m x 4 m) berechnet, woraus ein Geruchsstoffstrom von 1,56 MGE/h (432 GE/s) resultiert. Die Feststoffdosierer sind mit einer Abdeckung geplant. In dieser Untersuchung wurden Geruchsemissionen aus dem Feststoffdosierer für die Befüllzeiten von 2 h/d berücksichtigt. Innerhalb des Plangebietes wurden 3 Feststoffdosierer berücksichtigt.


Feststoffdosierer benachbarte Biogasanlage

Die nachwachsenden Rohstoffe, der Mist und die separierte Gülle werden über ein Feststoffeintragssystem in den Fermenter dosiert. Die Geruchsemissionen werden gemäß den Ansätzen zu Geruchsemissionsfaktoren des Landes Brandenburg [5] anhand eines flächenspezifischen Geruchsemissionsfaktors von 9 GE/(m³ x s) für aufgelockertes Material und einer emissionsrelevanten Oberfläche von 26 m² (8,6 m x 3 m) berechnet, woraus ein Geruchsstoffstrom von 0,84 MGE/h (232 GE/s) resultiert.

Gülleanlieferung innerhalb des Plangebietes

In den Anlagen innerhalb des Bebauungsplanes sollen jeweils 8.300 m³/a Gülle vergoren werden. Bei der Gülleanlieferung entweicht die verdrängte Aspirationsluft aus dem Güllevorlagebehälter diffus in die Atmosphäre. Die beim Befüllen freigesetzten Geruchsemissionen wurden in dieser Untersuchung aus dem verdrängten Luftvolumen und einer Geruchsstoffkonzentration von 2.000 GE/m³ berechnet.

Die stündlich angelieferte Güllemenge wurde mit 25 m 3 /h angesetzt, daraus resultiert ein Geruchsstoffstrom von 25 m 3 x 2.000 GE/m 3 = 0,05 MGE/h (14 GE/s). Die Emissionszeit beträgt somit ca. 332 h/a (8.300 m 3 /25 m 3).

Gärrestverladung innerhalb des Plangebietes

Aus den Inputmengen resultieren je Anlage ca. 40.000 m³ Gärreste pro Jahr, die mit Saugtankwagen abgefahren werden. Die dabei freigesetzten Geruchsemissionen wurden in dieser Untersuchung aus dem verdrängten Tankvolumen und einer Geruchsstoffkonzentration von 2.000 GE/m³ berücksichtigt. Das stündlich entnommene Gärrestvolumen wurde mit 50 m³/h angesetzt, daraus resultiert ein Geruchsstoffstrom von jeweils 50 m³ x 2.000 GE/m³ = 0,10 MGE/h (28 GE/s). Die entsprechende Emissionszeit beim Befüllen der zusätzlich erforderlichen Tankfahrzeuge von ca. 800 h/a (40.000 m³/50 m³) wurde im Frühjahr und Herbst berücksichtigt.

Gärrestverladung benachbarte Biogasanlage

Aus den Inputmengen resultieren ca. 14.400 m³ Gärreste pro Jahr, die mit Saugtankwagen abgefahren werden. Die dabei freigesetzten Geruchsemissionen wurden in dieser Untersuchung aus dem verdrängten Tankvolumen und einer Geruchsstoffkonzentration von 2.000 GE/m³ berücksichtigt. Das stündlich entnommene Gärrestvolumen wurde mit 25 m³/h angesetzt, daraus resultiert ein Geruchsstoffstrom von jeweils 25 m³ x 2.000 GE/m³ = 0,10 MGE/h (14 GE/s). Die entsprechende Emissionszeit beim Befüllen der zusätzlich erforderlichen Tankfahrzeuge von ca. 576 h/a (14.400 m³/25 m³) wurde im Frühjahr und Herbst berücksichtigt. Die Emissionen wurden auf die Entnahmezonen der zwei vorhandenen Endlager aufgeteilt.

Gär- und Lagerbehälter

Die Gär- und Lagerbehälter sind mit einer Gasspeicherfolie verschlossen. Durch eine Gasdiffusion sind sehr geringe Geruchsemissionen aus den Gär- und Lagerbehältern möglich. Auf Grund der großen Entfernung zu den nächstgelegenen Immissionsorten kann ein Einfluss von Geruchsemissionen aus den Gär- und Lagerbehältern auf die Immissionssituation an den Immissionsorten ausgeschlossen werden. Für die Gär- und Lagerbehälter werden in dieser Untersuchung keine Geruchsemissionen berücksichtigt.

BHKW

Bei einer vollständigen Verbrennung der produzierten Biogase im BHKW werden die organischen Kohlenwasserstoffverbindungen in geruchsloses Kohlendioxid und Wasser umgewandelt. Die Geruchsemissionen der Verbrennungsabgase des BHKW werden abhängig von den Inhaltsstoffen im Biogas, vom restlichen Schwefelgehalt und den vorherrschenden Motorparametern bestimmt. Da die bei der Verbrennung von Biogas im BHKW entstehende Abluft hinsichtlich der Geruchsemissionen keine Abgrenzung gegenüber Gerüchen aus Hausbrand oder KFZ-Verkehr

Seite 18 zum Bericht Nr. GS23110.1+2/01

ermöglichen, wären diese Geruchsemissionen im Sinne des Anhang 7 der TA Luft nicht abgrenzbar. Für die BHKW werden, auch aufgrund der großen Entfernung zu den nächstgelegenen Immissionsorten, keine Geruchsemissionen in dieser Untersuchung berücksichtigt.

Gärresttrocknung

Für beide Anlagen wurde als Option jeweils ein Gärresttrockner in dieser Untersuchung berücksichtigt. Für den Abluftvolumenstrom wurden Angaben vom Hersteller zur Verfügung gestellt. Die Gärresttrocknung nutzt die Abwärme eines BHKW. Somit werden die Abgase des BHKW gemeinsam mit dem Abgas des Trockners abgeleitet. In dieser Untersuchung wurde ein gemeinsamer Abgasvolumenstrom von 2.000 m³/h berücksichtigt. Gemäß TA Luft 5.4.8.6.2 sind die Abgase einer Gärresttrocknung einer Abluftreinigungsanlage Geruchsstoffkonzentration des behandelten Abgases darf 500 GE/m³ nicht überschreiten. Entsprechend wurde bei der Ausbreitungsrechnung eine Geruchsstoffkonzentration von 500 GE/m³ berücksichtigt. Es resultiert ein Geruchsstoffstrom von 1,0 MGE/h (278 GE/s).

Gärresttrocknung benachbarte Biogasanlage

In der derzeitig genehmigten Situation wird auf der benachbarten Biogasanlage eine Gärresttrocknung betrieben. Entsprechend den Angaben von zur Verfügung gestellten Unterlagen wurde für die Gärresttrocknung ein Abluftvolumenstrom von 20.000 m³/h mit einem Geruchsstoffkonzentration von 500 GE/m³ berücksichtigt. Es resultiert ein Geruchsstoffstrom von 10 MGE/h (2778 GE/s).

RTO

Das im Biomethan-Aufbereitungsprozess entstehende Schwachgas wird zur Abgasreinigung einer thermischen Abgasreinigungsanlage (regenerative thermischen Oxidation, RTO) zugeführt. Geruchsemissionen der Verbrennungsgase einer RTO sind von der Geruchsart dem typischen Geruch von "Hausbrand" oder "KFZ" zuzuordnen und sind somit im Sinne des Anhang 7 der TA Luft nicht abgrenzbar. Für die RTO-Anlagen werden in dieser Untersuchung keine Emissionen berücksichtigt.

In der nachfolgenden Tabelle sind die in dieser Untersuchung zu Grunde gelegten Geruchsstoffströme der Biogasanlagen angegeben.

 Tabelle 3 Geruchsemissionen der Biogasanlagen innerhalb des Bebauungsplanes

Quelle	Geruchs	Emissionszeit	
	[MGE/h]	[GE/s]	[h/a]
Silagelagerung Bestandsanlage	0,54	150	8.760
Silagelagerung Sievers geplant	0,54	150	8.760
Mistlager Wöste geplant	0,97	270	8.760
Separatlager Wöste geplant	0,32	90	8760
Mist-/Separatlager Sievers geplant	1,3	360	8.760
Feststoffdosierer Sievers	1,56	432	730
Feststoffdosierer 1 Wöste	1,56	432	730
Feststoffdosierer 2 Wöste	1,56	432	730
Gülleanlieferung Sievers	0,05	14	332
Gülleanlieferung Wöste	0,05	14	332
Gärrestverladung Sievers	0,10	28	800
Gärrestverladung Wöste	0,10	28	800
Gärresttrockner Sievers	1,0	278	8.760
Gärresttrockner Wöste	1,0	278	8.760

Tabelle 4 Geruchsemissionen der benachbarten Biogasanlage

Quelle	Geruchss	Emissionszeit	
	[MGE/h]	[GE/s]	[h/a]
Silagelagerung	0,54	150	8.760
Lager Mist + sep. Gülle, offen	1,08	300	8.760
Lager Mist + sep. Gülle, 3-seitig umschlossen	0,65	180	8.760
Feststoffdosierer	0,84	232	8.760
Gärrestverladung	0,05	14	576
Gärresttrocknung (genehmigte Situation, entfällt in der Plansituation)	10	2778	8.760

Seite 20 zum Bericht Nr. GS23110.1+2/01

Landwirtschaftliche Betriebe

Südwestlich des Plangebietes befindet sich die Tierhaltung des assoziierten landwirtschaftlichen Betriebes (LW 1) mit 4 Masthähnchenställen, deren Geruchsimmissionen als Vorbelastung betrachtet werden. Ein nordwestlich des Plangebietes gelegener Güllebehälter wird ebenfalls als Vorbelastung in der Ausbreitungsrechnung berücksichtigt.

Die Ermittlung der Geruchsemissionen erfolgt auf Grundlage der TA Luft und der VDI-Richtlinie 3894, Blatt 1. Dort werden der Stand der Haltungstechnik und der Maßnahmen zur Emissionsminderung bei der Haltung von Schweinen, Rindern, Geflügel und Pferden beschrieben. Die genehmigten Tierbestände der benachbarten landwirtschaftlichen Betriebe wurden vom Landkreis Emsland im Rahmen einer vorangegangenen Untersuchung zur Verfügung gestellt. Die ermittelten Emissionen der benachbarten Betriebe werden nicht in diesem Bericht aufgeführt, sondern werden dem Auftraggeber zum internen Gebrauch separat zur Verfügung gestellt.

3.2 Ammoniakemissionen

Die Ammoniakemissionen aus der Lagerung des Mists werden aus der Oberfläche der Mistlagerung je Halle mit 300 m² und dem flächenspezifischen Ammoniakemissionsfaktor der VDI-Richtlinie 3894, Blatt 1 von 1,83 kg/(a · m²) berechnet. Gemäß den Emissionsfaktoren des Landes Brandenburg [5] kann für die Lagerung innerhalb einer 3-seitig umschlossenen Halle eine Minderung von 70 % berücksichtigt werden. Es resultierten Ammoniakemissionen von 0,0054 g/s.

Für Gärreste aus der Separation gibt das Landesamt für Umwelt Brandenburg [5] einen Ammoniakemissionsfaktor von 0.25 (mg NH $_3$ /(m 2 + s)) an. Bei einer Lagerfläche von 100 m 2 und einer Minderung von 70 % durch die Lagerung innerhalb einer 3-seitig umschlossenen Halle resultieren Ammoniakemissionen von 0.0075 g/s.

Innerhalb des Feststoffeintrags befindet sich zukünftig neben den nachwachsenden Rohstoffen auch Mist, so dass auch hier Ammoniakemissionen entstehen können. Für den Feststoffeintrag wird im Sinne einer konservativen Betrachtung auch der flächenspezifische Ammoniakemissionsfaktor der VDI-Richtlinie 3894, Blatt 1 von 1,83 kg/(a · m²) für Festmist zur Emissionsermittlung herangezogen. Aus der offenen Oberfläche (48 m²) und dem o. g. Emissionsfaktor resultiert ein Ammoniakmassenstrom von 0,0029 g/s.

Seite 21 zum Bericht Nr. GS23110.1+2/01

Während der Lagerung der Gülle und Gärreste in den geschlossenen Lagerbehältern kommt es zu keinen relevanten Ammoniakemissionen.

Für die Gärrestverladung wurde anhand der Messwerte an Güllelagerbehältern und den Ansätzen zu den Ammoniakemissionsfaktoren des Landes Brandenburg [5] für offene Lagerbehälter (Gülle = 0,12 mg/m²·s / Gärrest = 0,42 mg/m²·s) ein Ansatz zur Ammoniakkonzentration bei der Gärrestverladung getroffen. Aus dem Verhältnis der Emissionsfaktoren der offenen Lagerung (Faktor 0,42/0,12 = 3,5) und dem Messwert an Güllelagerbehältern wurde ein Ammoniakkonzentrationswert von 3,5mg/m³ für die Gärrestverladung herangezogen. Aus dem angesetzten Verdrängungsluftvolumen bei der Gärrestabfuhr von 50 m³/h resultiert ein Ammoniakmassenstrom von 0,00005 g/s, welcher an 805 h/a emittiert wird.

Die Ammoniakemissionen der behandelten Abluft einer Gärresttrocknung sind gemäß TA Luft 5.4.8.6.2 auf 10 mg/m³ zu begrenzen. Diese Ammoniakkonzentration wurde in der Ausbreitungsrechnung berücksichtigt. Im Sinne einer konservativen Betrachtung wurde die Ammoniakkonzentration von 10 mg/m³ für den kompletten Abluftvolumenstrom von 2.000m³/h berücksichtigt, wobei dieser sich zusammensetzt aus dem Abgas des BHKW und der Gärresttrocknung.

In der nachfolgenden Tabelle sind die in dieser Untersuchung zu Grunde gelegten Ammoniakmassenströme der Biogas- und Biomethaneinspeiseanlage angegeben.

Tabelle 5 Ammoniakemissionen der Biogas- und Biomethaneinspeiseanlage

Quelle	Ammoniakm	nassenstrom	Minderung 70%	Emissionszeit
	[kg/h]	[g/s]	[g/s]	[h/a]
Mistlagerung Sievers	0,00648	0,0018	0,0054	8.760
Mistlagerung Wöste	0,00648	0,018	0,0054	8.760
Gärreste separiert Sievers	0,00009	0,025	0,0075	8.760
Gärreste separiert Wöste	0,00009	0,025	0,0075	8.760
Feststoffdosierer Sievers	0,01048	0,00288	-	730
Feststoffdosierer 1 Wöste	0,01048	0,00288	-	730

Seite 22 zum Bericht Nr. GS23110.1+2/01

Feststoffdosierer 2 Wöste	0,014048	0,00288		730
Gärrestverladung Sievers	0,00018	0,00005	-	800
Gärrestverladung Wöste	0,00018	0,00005	-	800
Gärresttrockner Wöste	0,02	0,0056		8.760
Gärresttrockner Sievers	0,02	0,0056		8.760

Seite 23 zum Bericht Nr. GS23110.1+2/01

4 Ausbreitungsrechnung

Die Ausbreitungsrechnung wird mit dem Modell Austal [6] durchgeführt. Die Berechnung der flächenbezogenen Häufigkeiten erfolgt mit dem Programm A2KArea (Programm AustalView, Version 10.3.0 TG,I). Dabei handelt es sich um die programmtechnische Umsetzung des im Anhang 2 der TA Luft [2] festgelegten Partikelmodells der VDI-Richtlinie 3945, Blatt 3 [7].

4.1 **Quellparameter**

Gemäß Anhang 2, Kapitel 11 TA Luft [2] sind Einflüsse von Bebauung auf die Immissionen im Rechengebiet zu berücksichtigen. Dabei ist in der TA Luft für gerichtete Quellen (Schornsteine) festgelegt, dass Einflüsse von Gebäuden in einer Entfernung bis zum 6-fachen der Quellhöhe und bis zum 6-fachen der jeweiligen Gebäudehöhe zu berücksichtigen sind.

"Beträgt die Schornsteinbauhöhe dabei mehr als das 1,7-fache der Gebäudehöhen, ist die Berücksichtigung der Bebauung durch eine geeignet gewählte Rauigkeitslänge und Verdrängungshöhe ausreichend. Bei geringerer Schornsteinbauhöhe kann folgendermaßen verfahren werden:

Befinden sich die immissionsseitig relevanten Aufpunkte außerhalb des unmittelbaren Einflussbereiches der quellnahen Gebäude (beispielsweise außerhalb der Rezirkulationszonen, siehe Richtlinie VDI 3781 Blatt 4 (Ausgabe Juli 2017)), können die Einflüsse der Bebauung auf das Windfeld und die Turbulenzstruktur mit Hilfe des im Abschlussbericht* zum UFOPLAN Vorhaben FKZ 203 43 256 dokumentierten diagnostischen Windfeldmodells für Gebäudeumströmung berücksichtigt werden. Anderenfalls sollte hierfür der Einsatz eines prognostischen Windfeldmodells für Gebäudeumströmung, das den Anforderungen der Richtlinie VDI 3783 Blatt 9 (Ausgabe Mai 2017) genügt, geprüft werden."

Die nächstgelegenen Immissionspunkte befinden sich außerhalb der Rezirkulationszonen der quellnahen Gebäude, sodass der Einsatz eines prognostischen Windfeldmodells nicht erforderlich ist.

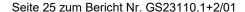
Für die Gärresttrocknung liegt noch keine Detailplanung für die Aufstellung sowie Umhausung der Aggregate vor. Es wurde in dieser Untersuchung eine Ableitung der Abluft mit einer Ableithöhe von

10,0 m über Grund (Mindestanforderung der TA Luft) berücksichtigt. Gebäudeeinflüsse wurden nicht berücksichtigt.

Die Ausbreitungsrechnung wurde unter Berücksichtigung des thermischen und dynamischen Impulses der Abgasfahnen für die Gärresttrocknungsanlagen durchgeführt. Es wird vorausgesetzt, dass folgende Bedingungen erfüllt werden:

- Die Schornsteinbauhöhen betragen gemäß TA Luft Nr. 5.5 [2] mindestens 10 m über Grund und mindestens 3 m über First. Eine ungestörte Ableitung der Emissionen ist gegeben.
- Für eine freie Ableitung des Abluftstromes ist eine freie Anströmung gewährleistet. In der Umgebung ist eine Beeinflussung durch Strömungshindernisse (z. B. höhere Bebauung oder Vegetation) gemäß Kapitel 4.5.3.2 der VDI-Richtlinie 3783, Blatt 13
 [1] ausgeschlossen.

Die Gasspeicherhauben der Gär- und Lagerbehälter werden auf Grund ihrer Kegelform ohne relevante Ausbildung von Leewirbeln vom Wind umströmt. Sie werden daher nicht wie Gebäude vergleichbarer Höhe als relevante Strömungshindernisse berücksichtigt.


Die übrigen diffusen Quellen wurden als Volumenquellen vom Erdboden bis zur Freisetzungshöhe modelliert.

In Anlage 2 sind alle relevanten Quellparameter (Abmessungen, Größe etc.) angegeben.

4.2 **Deposition**

Bei der Berechnung der Luftschadstoffimmissionen wurden die Depositionsgeschwindigkeiten und Auswaschraten gemäß Anhang 2 der TA Luft [2] berücksichtigt.

Bei der Berechnung von Geruchsimmissionen wird die Häufigkeit einer definierten Geruchsstoffkonzentration in der Luft bewertet. Eine Deposition wurde gemäß Anhang 2 der TA Luft [2] bei der Berechnung von Geruchsimmissionen nicht berücksichtigt.

4.3 Meteorologische Daten

Die Ausbreitungsrechnung wurde gemäß Anhang 2 der TA Luft [2] als Zeitreihenberechnung über ein Jahr auf Basis einer repräsentativen Jahreszeitreihe durchgeführt. Für den Standort Börger liegen keine meteorologischen Daten vor. Deshalb wird auf die Daten einer Messtation zurückgegriffen, deren meteorologischen Bedingungen vergleichbar sind. Im Rahmen einer Übertragbarkeitsprüfung wurde ermittelt, dass die Daten der Messstation Friesoythe-Altenoythe für den Standort in Börger angewendet werden können [8].

Die zeitliche Repräsentanz für die Station Friesoythe-Altenoythe wurde anhand einer Selektion des repräsentativen Jahres ermittelt [9]. Für die Station Friesoythe-Altenoythe wurde aus mehrjährigen Zeitreihen-Daten (2013-2021) das repräsentative Jahr ermittelt. Anhand der Windrichtungssektoren und der Windgeschwindigkeitsklassen erfolgt eine Normierung und Sortierung. Das Jahr, welches den mittleren Verhältnissen in Bezug auf die betrachteten Jahre am besten entspricht, kann bezüglich der Windrichtung bzw. Windgeschwindigkeit als repräsentativ angesehen werden. Für die Station Friesoythe-Altenoythe wurde aus dem o. g. Bezugszeitraum das Jahr 2019 als repräsentativ ermittelt. Die Häufigkeitsverteilung der Windrichtungen ist in Anlage 2 grafisch dargestellt. Für die Ermittlung der Geruchsemissionen wurden die Wetterdaten des Jahres 2019 berücksichtigt.

Da für den Bezugszeitraum 2019 keine Niederschlagsdaten verfügbar sind - die Daten liegen nur für den Zeitraum von 2006 bis Jahr 2015 vor - wurde für die Ermittlung der Ammoniakimmissionen das Jahr 2013 ausgewählt [10]. Die Windrichtungs- bzw. Windgeschwindigkeitsverteilung des Jahres 2013 entspricht als nächstbestes den mittleren Verhältnissen in dem Zeitraum in dem Niederschlagsdaten zur Verfügung stehen. Die Häufigkeitsverteilung der Windrichtungen für das Jahr 2013 ist ebenfalls in Anlage 2 grafisch dargestellt.

Gemäß TA Luft [2] ist für die Berechnung der nassen Deposition die Ausbreitungsrechnung als Zeitreihenberechnung durchzuführen. Als Niederschlagszeitreihe sind die für das Bezugsjahr der meteorologischen Daten und den Standort der Anlage vom Umweltbundesamt zur Verfügung gestellten Daten zu verwenden.

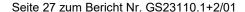
Für den Standort Börger wurden die standortbezogenen Niederschlagsdaten als Zeitreihe für das Jahr 2013 verwendet.

Seite 26 zum Bericht Nr. GS23110.1+2/01

4.4 Rechengebiet

Gemäß Anhang 2 der TA Luft [2] ist das Rechengebiet ausreichend groß und das Raster so zu wählen, dass Ort und Betrag der Immissionsmaxima mit hinreichender Sicherheit bestimmt werden können. In dieser Untersuchung wurde ein Rechengebiet von 1.760 m x 1.760 m berücksichtigt. Die Kantenlänge des Austal Rechengitters wurde an die Lage der Immissionspunkte angepasst (2 m, 4 m, 8 m).

4.5 Rauigkeitslänge


Die Bodenrauigkeit des Geländes wird durch die mittlere Rauigkeitslänge z_0 beschrieben. Gemäß Anhang 2 der TA Luft [2] ist die Rauigkeitslänge für ein kreisförmiges Gebiet um den Schornstein festzulegen, dessen Radius das 15-fache der Freisetzungshöhe (tatsächlichen Bauhöhe des Schornsteins), mindestens aber 150 m, beträgt. Setzt sich dieses Gebiet aus Flächenstücken mit unterschiedlicher Bodenrauigkeit zusammen, so ist eine mittlere Rauigkeitslänge durch arithmetische Mittelung mit Wichtung entsprechend dem jeweiligen Flächenanteil zu bestimmen und anschließend auf den nächstgelegenen Tabellenwert zu runden.

Die Berechnung der Rauigkeitslänge erfolgt anhand der Landnutzungsklassen des Landbedeckungsmodells Deutschland (LBM-DE). Die Landnutzungsklasse wurde durch Inaugenscheinnahme und Luftbildvergleich verifiziert. Da in diesem Fall die Bodenrauigkeit im Quellumfeld keinen relevanten Schwankungen unterliegt, wurde für den Emissionsschwerpunkt der Anlagen die Rauigkeitslänge berechnet. Für die Ausbreitungsrechnung wird eine Rauigkeitslänge z_0 von 0,20 m berücksichtigt.

4.6 Komplexes Gelände

Der Einfluss der Bebauung wird gemäß Kapitel 4.1 berücksichtigt. In dieser Untersuchung wurden in der Ausbreitungsrechnung keine Gebäude modelliert.

Das Beurteilungsgebiet ist eben. Die Berücksichtigung eines Windfeldmodelles ist daher nicht erforderlich.

4.7 Statistische Sicherheit

Gemäß Anhang 2 der TA Luft [2] ist in einer Ausbreitungsrechnung sicherzustellen, dass die modellbedingte statistische Unsicherheit, berechnet als statistische Streuung des berechneten Werts, bei einem Jahres-Immissionskennwert maximal 3 % vom Jahres-Immissionswert beträgt. Um dies zu gewährleisten, wurde bei der Ausbreitungsrechnung eine ausreichende Partikelzahl (Qualitätsstufe qs=2, entsprechend einer Partikelzahl von 8 s⁻¹) berücksichtigt. Zum Nachweis wurden im Bereich der umliegenden Immissionspunkte Analysepunkte festgelegt, die u. a. die statistische Unsicherheit ausweisen (Anlage 2).

4.8 Geruchsstoffauswertung

Die Beurteilungsflächen der Geruchsstoffauswertung (A2KArea Rechengitter) gemäß Anhang 7 der TA Luft [2] wurden mit einer Kantenlänge von 50 m berücksichtigt.

Seite 28 zum Bericht Nr. GS23110.1+2/01

5 <u>Ergebnisse der Ausbreitungsrechnung</u>

5.1 <u>Geruchsimmissionen</u>

Mittels Ausbreitungsrechnung wurde anhand der ermittelten Geruchsemissionen die Gesamtzusatzbelastung an Geruchsimmissionen berechnet und als 2 %-Isolinie zusammen mit dem 600 m Radius um den Betriebsstandort in der Anlage 3 dargestellt. Entsprechend werden alle Immissionspunkte innerhalb des 600 m Radius und der 2 %-Isolinie betrachtet.

In der Anlage 4 ist die Gesamtzusatzbelastung an Geruchsimmissionen für das Plangebiet dargestellt. Wie das Ergebnis zeigt, beträgt die Gesamtzusatzbelastung an Geruchsimmissionen an den südlich gelegenen Entwicklungsgebieten der Gemeinde Börger sowie dem vorhandenen Wohngebiet maximal 1 % der Jahresstunden.

Bei Berücksichtigung der Vorbelastung führen die Planungen innerhalb des Plangebietes durch die Überlagerung mit Geruchsfahnen der vorhandenen benachbarten Betriebe zu keiner Veränderung der vorhandenen Gesamtbelastung an Geruchsimmissionen in den südlichen Entwicklungsgebieten sowie vorhandenen Wohngebieten. Dies zeigt der Vergleich der ermittelten Gesamtbelastungen an Geruchsimmissionen.

Bei der Ermittlung der Gesamtbelastung an Geruchsimmissionen werden alle Betriebe berücksichtigt, die auf die Immissionspunkte im Beurteilungsraum einwirken. Die Gesamtbelastung an Geruchsimmissionen ist in der Anlage 5 sowohl für die derzeit genehmigte als auch für die geplante Situation dargestellt. In der geplanten Situation wurden die Planungen innerhalb des Bebauungsplanes sowie die Planungen der benachbarten Biogasanlage berücksichtigt.

Wie die Ergebnisse zeigen, wird der im Anhang 7 der TA Luft [2] für Wohn- und Mischgebiete angegebene maßgebliche Immissionswert für die Gesamtbelastung an Geruchsimmissionen von 10 % der Jahresstunden an den bestehenden Wohngebieten sowie an den südlich gelegenen Entwicklungsflächen für Wohnen eingehalten.

An den südwestlich gelegenen, für Wohngebiete vorgesehenen Entwicklungsflächen der Gemeinde Börger beträgt die Gesamtbelastung an Geruchsimmissionen maximal 13 % der Jahresstunden.

In den Auslegungshinweisen/Kommentar zum Anhang 7 der TA Luft 2021 [11] wird beschrieben, dass in begründeten Einzelfällen - entsprechend Nr. 3.1 Abs. 5 Anhang 7 TA Luft - die Festlegung von Zwischenwerten zwischen den Nutzungsbereichen möglich ist. Der Übergangsbereich sollte aber räumlich eindeutig begrenzt werden: Die nachfolgende Tabelle zeigt die Zwischenwerte.

Tabelle 6 Zwischenwerte für den Übergangsbereich verschiedener Nutzungen

Anlagentyp	Übergangsbereich	Immissionswert
Tierhaltungsanlagen	Dorfgebiet - Außenbereich	0,15 < IW ≤ 0,20
Tierhaltungsanlagen	Wohn-/Mischgebiet - Dorfgebiet	0,10 < IW < 0,15
Tierhaltungsanlagen	Wohn-/Mischgebiet - Außenbereich	0,10 < IW < 0,15
Gewerbe-/Industrieanlagen	Wohn-/Mischgebiet - Gewerbe-/Industriegebiet	0,10 < IW < 0,15
Gewerbe-/Industrieanlagen	Wohn-/Mischgebiete (einschließlich Dorfgebiete) - Außenbereich	0,10 < IW < 0,15

Im Übergangsbereich von Wohngebieten zum Außenbereich mit Tierhaltungsanlagen können Zwischenwerte von bis zu 14 % der Jahresstunden als angemessen betrachtet werden. Mit einer ermittelten Gesamtbelastung an Geruchsimmissionen von maximal 13 % der Jahresstunden, wäre eine Ausweisung von Wohngebietsflächen im Bereich der Entwicklungsflächen der Gemeinde Börger grundsätzlich möglich.

Der im Anhang 7 der TA Luft [2] für Gewerbe- und Industriegebiete angegebene maßgebliche Immissionswert für die Gesamtbelastung an Geruchsimmissionen von 15 % der Jahresstunden (bei zulässigem Wohnen im Gewerbegebiet) wird im südlich der geplanten Anlagen gelegenen Gewerbegebiet eingehalten.

In der Anlage 5.3 ist die Differenz der Gesamtbelastung an Geruchsimmissionen zwischen der geplanten und der genehmigten Situation dargestellt. Wie das Ergebnis zeigt, verändert sich die Immissionssituation durch die Planungen an den südlichen Entwicklungsflächen der Gemeinde Börger nicht.

Seite 30 zum Bericht Nr. GS23110.1+2/01

Innerhalb des Bebauungsplangebietes befinden sich unmittelbar benachbart die vorhandenen und geplanten Biogasanlagen sowie die Masthähnchenställe des Betriebes Wöste. Die für die lokalen Geruchsimmissionen innerhalb des Bebauungsplangebietes bestimmenden Quellen sind die Masthähnchenställe sowie auf den Biogasanlagen insbesondere die Mistlagerflächen. Im Wesentlichen soll Geflügelmist als Inputstoff gelagert werden. Da die Geruchsart der Geflügelmistlagerung und der Mastgeflügelhaltung vergleichbar ist, können die innerhalb des Plangebietes auftretenden Gerüche nicht den einzelnen Anlagen zugeordnet werden, da diese nicht klar unterscheidbar sind. Die in der Geflügelhaltung oder der Biogaserzeugung auf den Anlagen tätigen Arbeitnehmer sind somit während ihrer Arbeitszeit den vergleichbaren Gerüchen aus der eigenen Tätigkeit und aus den benachbarten Anlagen ausgesetzt. Da keine eindeutige Unterscheidbarkeit der Gerüche gegeben ist, kann davon ausgegangen werden, dass durch Geruchsimmissionen der benachbarten Anlagen keine zusätzlichen Belästigungen der Arbeitnehmer als durch die eigenen arbeitsplatzbezogenen Tätigkeiten hervorgerufen werden.

Somit sind aus geruchstechnischer Sicht keine unzulässigen Beeinträchtigungen der Nachbarschaft durch die Aufstellung der 147. Änderung des Flächennutzungsplanes der Samtgemeinde Sögel sowie des Bebauungsplanes Nr. 38 " Biogasanlage, 1. Erweiterung" der Gemeinde Börger mit der in diesem Bericht erläuterten Errichtung und dem Betrieb von Biogasanlagen sowie einer Biogasaufbereitungsanlagen und einer Biomethaneinspeisung zu erwarten.

5.2 Ammoniak- und Stickstoffimmissionen

Anhand der aus den Anlagenteilen ermittelten Ammoniakemissionen wurde die Gesamtzusatzbelastung an Ammoniakkonzentration und Stickstoffdeposition berechnet.

Im Rahmen der Untersuchung für die Bauleitplanung wurden die Ammoniakemissionen der Anlagen innerhalb des Plangebietes für die Ermittlung der Gesamtzusatzbelastung an Ammoniak- und Stickstoffimmissionen berücksichtigt. Im Zuge der Genehmigungsverfahren für die einzelnen Anlagen sind die Ammoniakimmissionen ausschließlich aus den Emissionen der einzelnen Anlage zu ermitteln.

In der Anlage 6 ist die Gesamtzusatzbelastung an Ammoniakkonzentration und Stickstoffdeposition dargestellt. Die Darstellung erfolgt als Isolinie der Ammoniakkonzentration von 2 μ g/m³ sowie als Isolinie der Stickstoffdeposition von 5 kg/(ha·a). Die Berechnung der Stickstoffdeposition erfolgt für Waldflächen unter Berücksichtigung der Depositionsgeschwindigkeit von v_d = 0,02 m/s.

Seite 31 zum Bericht Nr. GS23110.1+2/01

Sofern im Bereich der dargestellten 2 µg/m³-Isolinie keine empfindlichen Pflanzen und Ökosysteme vorliegen, liegt gemäß TA Luft [2] kein Anhaltspunkt auf Vorliegen erheblicher Nachteile durch Schädigung empfindlicher Pflanzen und Ökosysteme aufgrund der Einwirkung von Ammoniak vor.

Sofern im Bereich der dargestellten 5 kg/(ha·a)-Isolinie keine empfindlichen Pflanzen und Ökosysteme vorliegen, ist gemäß TA Luft [2] keine weitere Beurteilung der Stickstoffdeposition erforderlich.

Innerhalb der berechneten Isolinien der Ammoniakkonzentration und Stickstoffdeposition befinden sich keine Waldflächen oder sonstige ausgewiesene empfindliche Pflanzen und Ökosysteme.

In der Anlage 7 ist der Einwirkbereich auf Gebiete von gemeinschaftlicher Bedeutung (FFH-Gebiete), hervorgerufen durch die Zusatzbelastung an Stickstoffdeposition (in diesem Fall entspricht die Zusatzbelastung = der Gesamtzusatzbelastung) für die Depositionsgeschwindigkeiten v_d = 0,02 m/s dargestellt.

Innerhalb der Isolinien der Stickstoffdeposition befinden sich keine ausgewiesenen Gebiete gemeinschaftlicher Bedeutung.

Eine weitergehende naturschutzfachliche Beurteilung der Ergebnisse ist nicht Bestandteil dieser Untersuchung

6 <u>Literaturverzeichnis</u>

- [1] VDI-Richtlinie 3783, Blatt 13, *Umweltmeteorologie, Qualitätssicherung in der Immissionsprognose*, Januar 2010.
- [2] TA Luft Technische Anleitung zur Reinhaltung der Luft, Gemeinsames Ministerialblatt Neufassung der 1. Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz vom 18.08.2021, in Kraft getreten am 01.12.2021.
- [3] BImSchG, Bundes-Immissionsschutzgesetz: Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge, 26.07.2023.
- [4] VDI Richtlinie 3886, Blatt 1, Ermittlung und Bewertung von Gerüchen Geruchsgutachten Ermittlung der Notwendigkeit und Hinweise zur Erstellung, September 2019.
- [5] G.-. u. A. d. L. Brandenburg, zum Erlass des MLUL vom 15. Juni zur Beurteilung von Ammoniak- und Geruchsimmissionen sowie Stickstoffdeposition aus Tierhaltungs- und Biogasanlagen, November 2020.
- [6] Austal, Version 3.1.2-Wl-x, Ingenieurbüro Janicke GbR, 88662 Überlingen und Umweltbundesamt, 06813 Dessau-Roßlau, 01.08.2023.
- [7] VDI-Richtlinie 3945, Blatt 3, *Umweltmeteorologie Atmosphärische Ausbreitungsmodelle Partikelmodell*, September 2000.
- [8] Argusim Umwelt Consult, Fachliche Empfehlung zur Übertragbarkeit von Daten der meteorologischen Ausbreitungsbedingungen von einem vorgegebenen Messort auf den Anlagenstandort Börger, 26.05.2023.
- [9] argusim Umwelt Consult, *Dokumentation eines Wetterdatensatzes Station Friesoythe- Altenoythe (DWD 1503)*, 13.05.2022.
- [10] argusim Umwelt Consult, Dokumentation eines Wetterdatensatzes zur Verwendung in Ausbreitungsrechnungen (In Verbindung mit Niederschlagsdaten) Friesoythe-Altenoythe (DWD 1503), 06.09.2022.
- [11] Expertengremium Geruchsimmisions-Richtlinie, Kommentar zu Anhang 7 TA Luft 2021, Feststellung und Beurteilung von Geruchsimmissionen, 08.02.2022.

7 Anlagen

Anlage 1: Übersichtslageplan

Anlage 2: Lageplan mit Kennzeichnung der Quellen

Quellen-Parameter

Emissionen

Variable Emissionen

Windrichtungs- und Geschwindigkeitsverteilung

Auszüge der Quell- und Eingabedateien der Ausbreitungsrechnung mit allen

relevanten Quellparametern

Auswertung der Analysepunkte

Anlage 3: Gesamtzusatzbelastung an Geruchsimmissionen - 2 %-Isolinie

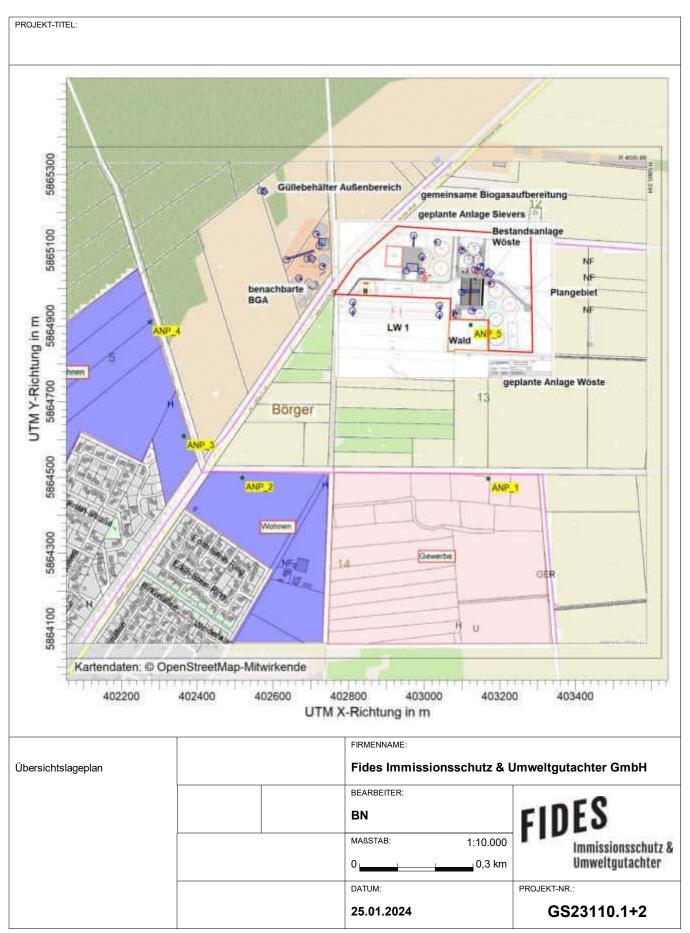
Anlage 4: Gesamtzusatzbelastung an Geruchsimmissionen - Auswertegitter

Anlage 5: Gesamtbelastung an Geruchsimmissionen

Genehmigte Situation
Geplante Situation

Differenz

Anlage 6: Gesamtzusatzbelastung an Ammoniak- und Stickstoffimmissionen


Anlage 7: Zusatzbelastung an Stickstoffdeposition bzgl. Gebieten gemeinschaftlicher

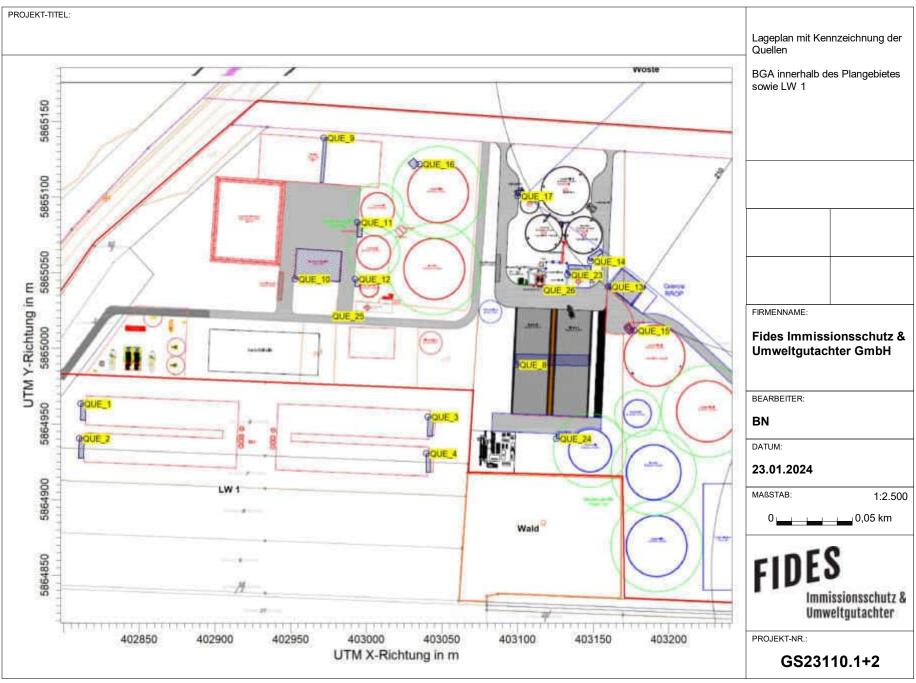
Bedeutung

Anlage 8: Prüfliste für die Immissionsprognose [1]

Anlage 1: Übersichtslageplan

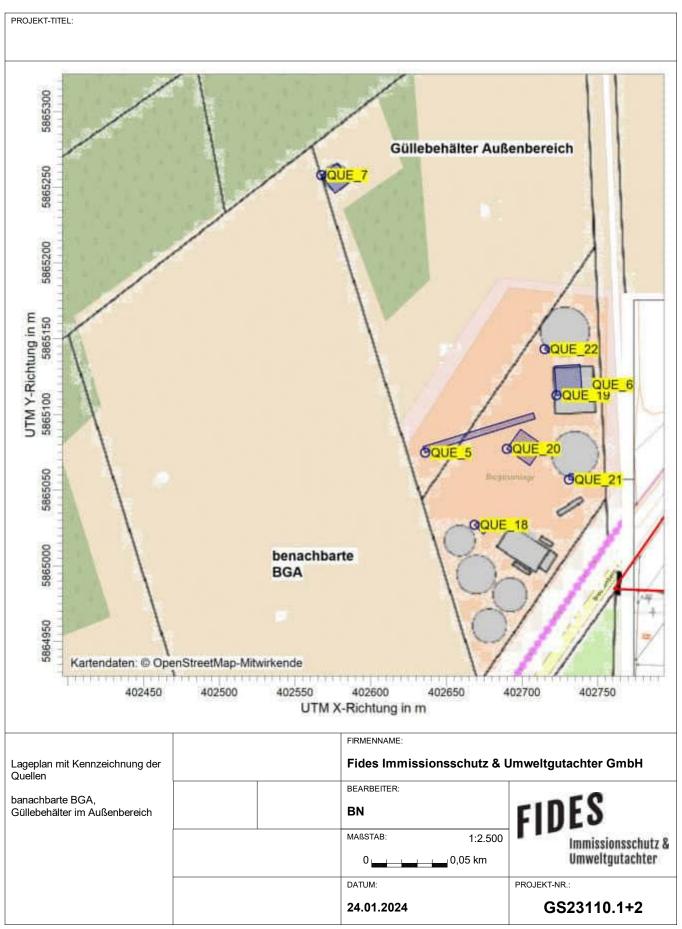
Anlage 2: Lageplan mit Kennzeichnung der Quellen

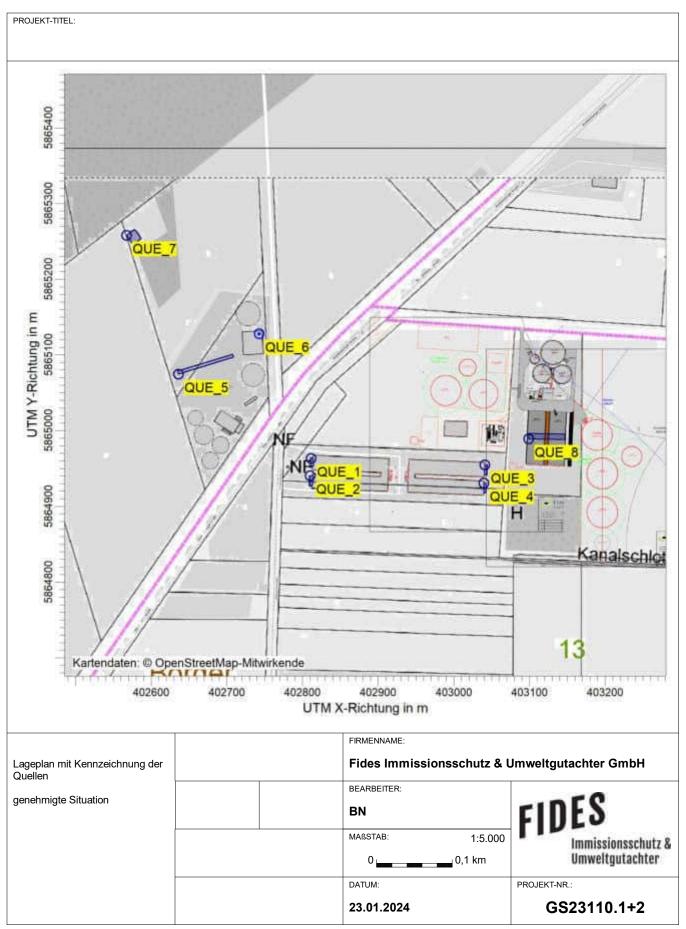
Quellen-Parameter


Emissionen

Variable Emissionen

Windrichtungs- und Geschwindigkeitsverteilung


Auszüge der Quell- und Eingabedateien der Ausbreitungsrechnung mit allen relevanten Quellparametern


Auswertung der Analysepunkte

AUSTAL View - Lakes Environmental Software & ArguSoft

 $C. \label{localization} C. \label{localization} C. \label{localization} Projekte_Austal3 \label{localization} WundS_Bioenergie \label{localization} WundS_Bioenergie \label{localization} Projekte_Austal3 \label{localization} WundS_Bioenergie \label{localization} WundS_Bioenergie \label{localization} Projekte_Austal3 \label{localization} WundS_Bioenergie \label{localization} Projekte_Austal3 \label{localization} WundS_Bioenergie \label{localization} Projekte_Austal3 \label{localization} WundS_Bioenergie \label{localization} Projekte_Austal3 \label{localization} Projekte_Austal3 \label{localization} WundS_Bioenergie \label{localization} Projekte_Austal3 \label{localizati$

Quellen-Parameter

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Punkt-Quellen

Quelle ID	X-Koord. [m]	Y-Koord. [m]	Emissions- hoehe [m]	Schornstein- durchmesser [m]	Spezifische Feuchte [kg/kg]	Relative Feuchte [%]	Wasserbe- ladung [kg/kg]	Flüssigwa- ssergehalt [kg/kg]	Austritts- temperatur [°C]	Austritts- geschw. [m/s]	Zeitskala [s]
QUE_25	403000,69	5865026,93	10,00	0,25	0,0	0,00	0,10	0,000	200,00	19,60	0.00
BGA 3 Gärresttre	BGA 3 Gärresttrockner										
QUE_26	403140,10	5865044,17	10,00	0,25	0,0	0,00	0,10	0,000	200,00	19,60	0.00
BGA 4 Gärresttre	ockner										

Volumen-Quellen

Quelle ID	X-Koord. [m]	Y-Koord. [m]	Laenge X-Richtung [m]	Laenge Y-Richtung [m]	Laenge Z-Richtung [m]	Drehwinkel [Grad]	Emissions- hoehe [m]	Austritts- geschw. [m/s]	Zeitskala [s]		
QUE_1	402811,19	5864963,56	10,90	3,04	5,00	271,5	5,00	0,00	0,00		
LW 1_1											
QUE_2	402810,27	5864940,59	13,14	3,41	5,00	267,6	5,00	0,00	0,00		
LW 1_2											
QUE_3	403040,72	5864954,84	13,05	3,44	5,00	267,7	5,00	0,00	0,00		
LW 1_3											
QUE_4	403039,52	5864930,64	12,53	3,09	5,00	269,2	5,00	0,00	0,00		
LW 1_4						•		:			
QUE_7	402567,32	5865258,12	15,14	13,20	3,00	306,9	0,00	0,00	0,00		
GB_außen											
QUE_8	403098,81	5864989,33	47,95	6,94	5,00	359,0	0,00	0,00	0,00		
BGA_2_MS											
QUE_9	402971,83	5865139,22	29,58	2,06	5,00	265,7	0,00	0,00	0,00		
BGA 3_MS											
QUE_10	402952,79	5865045,87	30,00	20,00	6,00	356,5	0,00	0,00	0,00		
BGA 3_Subs	tratlagerhalle										
QUE_11	402994,17	5865083,35	10,00	3,00	3,00	269,4	0,00	0,00	0,00		
BGA 3_Fests	stoffeintrag										

 $Projektdatei: C:\label{projekte_Austal3} WundS_Bioenergie \label{projekte_Austal3} WundS_Bioenergie \label{projekte_Austal3}. Bioenergie_geplant_03_GT_500_2x. WundS_Bioenergie_geplant_03_GT_500_2x. WundS_500_2x. WundS_500$

Quellen-Parameter

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Quelle ID	X-Koord. [m]	Y-Koord. [m]	Laenge X-Richtung [m]	Laenge Y-Richtung [m]	Laenge Z-Richtung [m]	Drehwinkel [Grad]	Emissions- hoehe [m]	Austritts- geschw. [m/s]	Zeitskala [s]			
QUE_12	402992,60	5865045,82	5,00	3,00	3,00	266,8	0,00	0,00	0,00			
BGA 3_Anlie	BGA 3_Anlieferung Gülle											
QUE_13	403159,82	5865040,67	20,00	15,00	6,00	-37,4	0,00	0,00	0,00			
BGA 4_Substratlager												
QUE_14	403148,04	5865057,47	10,00	3,00	3,00	34,2	0,00	0,00	0,00			
BGA 4_Feststoffeintrag 1												
QUE_15	403177,21	5865011,71	5,96	4,18	3,00	131,5	0,00	0,00	0,00			
BGA 4_Abful	nr Gärrest											
QUE_16	403034,87	5865121,71	5,46	4,89	3,00	133,7	0,00	0,00	0,00			
BGA 3_Abful	nr Gärreste											
QUE_17	403099,81	5865100,72	5,00	3,00	3,00	25,1	0,00	0,00	0,00			
BGA 4_Anlieferung Gülle												
QUE_5	402635,94	5865074,78	76,14	4,11	5,00	17,0	0,00	0,00	0,00			
BGA_1_MS												
QUE_18	402668,57	5865027,12	8,60	3,00	3,00	312,8	0,00	0,00	0,00			
BN_Feststoff	eintrag											
QUE_19	402722,59	5865112,72	16,97	19,25	6,00	3,4	0,00	0,00	0,00			
BN_Mistlage	r indoor											
QUE_20	402689,78	5865077,23	18,86	15,90	2,00	324,8	0,00	0,00	0,00			
BN_Mistlage	r outdoor											
QUE_21	402731,04	5865057,04	5,41	3,92	3,00	354,1	0,00	0,00	0,00			
BN_Gärresta	bholung_01											
QUE_22	402714,96	5865143,14	5,52	2,58	3,00	322,4	0,00	0,00	0,00			
BN_Gärresta	bholung_02											
QUE_23	403132,95	5865048,48	14,86	6,56	2,00	357,0	0,00	0,00	0,00			
BGA Wöste_	Separatlager											
QUE_24	403125,49	5864940,36	10,32	2,88	3,00	358,1	0,00	0,00	0,00			
BGA 4_Fests	stoffeintrag 2_optionale Er	rweiterung										

 $Projektdatei: C: \label{projekte_Austal} WundS_Bioenergie \label{projekte_Austal} WundS_Bioenergie \label{projekte_Austal} \\ Bioenergie_geplant_03_GT_500_2x \label{projekte_Austal} \\ WundS_Bioenergie_geplant_03_GT_500_2x \label{projekte_Austal} \\ WundS_Bioenergie_geplant_03_GT_500_2x \label{projekte} \\ WundS_Bioenergie_geplant_03_GT$

Quellen-Parameter

Projekt: WundS_Bioenergie_gen_gesamt_FA2019

Volumen-Quellen

Quelle ID	X-Koord. [m]	Y-Koord. [m]	Laenge X-Richtung [m]	Laenge Y-Richtung [m]	Laenge Z-Richtung [m]	Drehwinkel [Grad]	Emissions- hoehe [m]	Austritts- geschw. [m/s]	Zeitskala [s]		
QUE_1	402811,19	5864963,56	10,90	3,04	5,00	271,5	5,00	0,00	0,00		
LW 1_1											
QUE_2	402810,27	5864940,59	13,14	3,41	5,00	267,6	5,00	0,00	0,00		
LW 1_2											
QUE_3	403040,72	5864954,84	13,05	3,44	5,00	267,7	5,00	0,00	0,00		
LW 1_3											
QUE_4	403039,52	5864930,64	12,53	3,09	5,00	269,2	5,00	0,00	0,00		
LW 1_4											
QUE_5	402635,94	5865074,78	76,14	4,11	5,00	17,0	0,00	0,00	0,00		
BGA_1_MS											
QUE_7	402567,32	5865258,12	15,14	13,20	3,00	306,9	0,00	0,00	0,00		
GB_außen											
QUE_8	403098,81	5864989,33	47,95	6,94	5,00	359,0	0,00	0,00	0,00		
BGA_2_MS											

Linien-Quellen

Quelle ID	X-Koord. [m]	Y-Koord. [m]	Laenge X-Richtung [m]	Laenge Z-Richtung [m]	Drehwinkel [Grad]	Emissions- hoehe [m]	Schornstein- durchmesser [m]	Austritts- geschw. [m/s]	Zeitskala [s]		
QUE_6	402742,57	5865127,85		5,00	0,1	5,00	0,00	0,00	0,00		
BGA_1_Gärr	-										

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Projekt: WundS_Bioenergie_geplant_03_G1_500_	_ Z X		
Quelle: QUE_1 - LW 1_1			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	0	8755
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	0,000E+0	1,814E+1
Emission der Quelle [kg oder MGE]:	0,000E+0	0,000E+0	1,589E+5
Quelle: QUE_10 - BGA 3_Substratlagerhalle			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	1,296E+0	0,000E+0
Emissions-Rate [kg/ff oder MGE/ff]. Emission der Quelle [kg oder MGE]:	0,000E+0	1,135E+4	0,000E+0
	0,000L+0	1,1332+4	0,000∟+0
Quelle: QUE_11 - BGA 3_Feststoffeintrag			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	729	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	1,134E+3	0,000E+0
Quelle: QUE_12 - BGA 3_Anlieferung Gülle	•	·	·
Quelle. Que_12 - DOA 0_Allifelelang Calle			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	332	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	1,673E+1	0,000E+0
Quelle: QUE_13 - BGA 4_Substratlager			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	9,720E-1	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	8,510E+3	0,000E+0
	J,000L.0	0,0102.0	0,0001.0
Quelle: QUE_14 - BGA 4_Feststoffeintrag 1			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	729	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	1,134E+3	0,000E+0
Quelle: QUE_15 - BGA 4 Abfuhr Gärrest			
	ODOD 075	ODOD 400	ODOB 450
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	803	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	8,094E+1	0,000E+0

 $Projektdatei: C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_GT_500_2x\\\WundS_Bioenergie_geplant_03_GT_500$

AUSTAL View - Lakes Environmental Software & ArguSoft 23.01.2024 Seite 1 von 4

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Projekt: wunds_Bioenergie_geplant_03_G1_500_	_ ∠ X		
Quelle: QUE_16 - BGA 3_Abfuhr Gärreste			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	803	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	8,094E+1	0,000E+0
Quelle: QUE_17 - BGA 4_Anlieferung Gülle			
Quono: Que	0000 075	0000 400	0000 450
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	332	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	1,673E+1	0,000E+0
Quelle: QUE_18 - BN_Feststoffeintrag			
	ODOD 075	ODOD 400	ODOB 450
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	8,352E-1	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	7,312E+3	0,000E+0
Quelle: QUE_19 - BN_Mistlager indoor			
	ODOR_075	ODOR_100	ODOR_150
E			
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	6,480E-1	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	5,673E+3	0,000E+0
Quelle: QUE_2 - LW 1_2			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	0	8755
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	0,000E+0	1,814E+1
Emissions-rate [kg/if oder MGE/if]:	0,000E+0	0,000E+0	1,589E+5
	0,000L+0	0,000L+0	1,5092+5
Quelle: QUE_20 - BN_Mistlager outdoor			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	1,080E+0	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	9,455E+3	0,000E+0
	J,000E:0	0,100E · 0	3,0002.0
Quelle: QUE_21 - BN_Gärrestabholung_01			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	292	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	1,472E+1	0,000E+0
·· [··3 · · · · -]·	,		-,

 $Projektdatei: C: \Projekte \Projekte \Austal 3 \WundS_Bioenergie \WundS_Bioenergie_geplant_03_GT_500_2x \WundS_Bioenergie_geplant_03_GT_500_2x. austal 3 \WundS_Bioenergie_geplant_03_GT_500_2x \WundS_500_2x \WundS_5$

AUSTAL View - Lakes Environmental Software & ArguSoft 23.01.2024 Seite 2 von 4

Projekt: WundS Bioenergie geplant 03 GT 500 2x

Quelle: QUE 22 - BN Gärrestabholung 02			
Quene. Que_22 - Dit_Carrestabiliolarig_02	ODOD 075	ODOD 460	ODOD 450
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	287	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	1,446E+1	0,000E+0
Quelle: QUE_23 - BGA Wöste_Separatlager			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	3,240E-1	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	2,837E+3	0,000E+0
Quelle: QUE 24 - BGA 4 Feststoffeintrag 2 optionale Erweit	· · · · · · · · · · · · · · · · · · ·		
Quono: Que1 - DOA +_1 continuing 2_optionale El Well	_	0000 466	0000 455
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	728	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	?	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	1,132E+3	0,000E+0
Quelle: QUE_25 - BGA 3 Gärresttrockner			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	1,001E+0	0,000E+0
Emission der Quelle [kg oder MGE/II]:	0,000E+0	8,762E+3	0,000E+0
	J,000E:0	5,7 5 <u>L</u> L · 5	3,0002.0
Quelle: QUE_26 - BGA 4 Gärresttrockner			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	1,001E+0	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	8,762E+3	0,000E+0
Quelle: QUE_3 - LW 1_3			
	ODOR_075	ODOR 100	ODOR 150
F		ODOR_100	ODOR_150
Emissionszeit [h]:	0	0	8755
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	0,000E+0	1,814E+1
Emission der Quelle [kg oder MGE]:	0,000E+0	0,000E+0	1,589E+5
Quelle: QUE_4 - LW 1_4			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	0	8755
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	0,000E+0	1,814E+1
Emission der Quelle [kg oder MGE]:	0,000E+0	0,000E+0	1,589E+5
Enlicoion dei Quelle [ng oder MOE].	3,0002.0	0,000=-0	1,0002.0

 $Projektdatei: C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_GT_500_2x\\\WundS_Bioenergie_geplant_03_GT_500$

AUSTAL View - Lakes Environmental Software & ArguSoft 23.01.2024 Seite 3 von 4

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Projekt: vvundS_Bioenergie_gepiant_03_G1_500_			
Quelle: QUE_5 - BGA_1_MS			
	ODOR_075	ODOR_100	ODOR_150
F			
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	5,400E-1	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	4,728E+3	0,000E+0
Quelle: QUE_7 - GB_außen			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	8755	0	0
Emissions-Rate [kg/h oder MGE/h]:	2,563E+0	0,000E+0	0,000E+0
Emission der Quelle [kg oder MGE]:	2,244E+4	0,000E+0	0,000E+0
Quelle: QUE_8 - BGA_2_MS			
	ODOD 075	ODOR 400	ODOD 450
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	5,400E-1	0,000E+0
Emission der Quelle [kg oder MGE]:	0,000E+0	4,728E+3	0,000E+0
Quelle: QUE_9 - BGA 3_MS			
	ODOR_075	ODOR_100	ODOR_150
Emissionszeit [h]:	0	8755	0
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	5,400E-1	0,000E+0
			· · · · · · · · · · · · · · · · · · ·
Emission der Quelle [kg oder MGE]:	0,000E+0	4,728E+3	0,000E+0
Gesamt-Emission [kg oder MGE]:	2,244E+4	8,047E+4	6,354E+5
Gesamt-Emission [kg oder MGE]: Gesamtzeit [h]:	2,244E+4 8755	8,047E+4	6,354E+5

Projekt: WundS_Bioenergie_	aen ae	esamt FA2019
----------------------------	--------	--------------

Projekt: WundS_Bioenergie_gen_gesamt_FA2019					
Quelle: QUE_1 - LW 1_1					
	ODOR_075	ODOR_100	ODOR_150		
Emissionszeit [h]:	0	0	8755		
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	0,000E+0	1,814E+1		
Emission der Quelle [kg oder MGE]:	0,000E+0	0,000E+0	1,589E+5		
Quelle: QUE_2 - LW 1_2		<u> </u>	<u> </u>		
quelle. QUL_Z - LW 1_Z					
	ODOR_075	ODOR_100	ODOR_150		
Emissionszeit [h]:	0	0	8755	 	
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	0,000E+0	1,814E+1		
Emission der Quelle [kg oder MGE]:	0,000E+0	0,000E+0	1,589E+5		
Quelle: QUE_3 - LW 1_3					
	ODOR_075	ODOR_100	ODOR_150		
Emission 14 PL-1.			8755		
Emissionszeit [h]:	0 0005+0	0		 	
Emissions-Rate [kg/h oder MGE/h]: Emission der Quelle [kg oder MGE]:	0,000E+0	0,000E+0	1,814E+1		
	0,000E+0	0,000E+0	1,589E+5		
Quelle: QUE_4 - LW 1_4					
	ODOR_075	ODOR_100	ODOR_150		
Emissionszeit [h]:	0	0	8755		
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	0,000E+0	1,814E+1		
Emission der Quelle [kg oder MGE]:	0,000E+0	0,000E+0	1,589E+5		
Quelle: QUE_5 - BGA_1_MS					
Quelle. QUE_U - DOA_1_IIIO					
	ODOR_075	ODOR_100	ODOR_150		
Emissionszeit [h]:	0	8755	0		
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	5,400E-1	0,000E+0		
Emission der Quelle [kg oder MGE]:	0,000E+0	4,728E+3	0,000E+0		
Quelle: QUE_6 - BGA_1_Gärresttrocknung					
	ODOR_075	ODOR_100	ODOR_150		
Fuginal accessite flat.					
Emissionszeit [h]:	0 0005+0	8755	0	 	
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	1,000E+1	0,000E+0		
Emission der Quelle [kg oder MGE]:	0,000E+0	8,756E+4	0,000E+0		
Quelle: QUE_7 - GB_außen					
	ODOR_075	ODOR_100	ODOR_150		
Emissionszeit [h]:	8755	0	0		
Emissions-Rate [kg/h oder MGE/h]:	2,563E+0	0,000E+0	0,000E+0		
Emission der Quelle [kg oder MGE]:	2,244E+4	0,000E+0	0,000E+0		
Elinosion dei daene [ng oder MOE].	_,_ · · · · · ·	0,000=-0	0,000= 0		

 $Projekt date i: C: \Projekte Austal 3 \land Wund S_Bioenergie \land Wund S_Bioenergie \Quantum Bioenergie Qen_gesamt_FA 2019 \land Wund S_Bioenergie Qen_gesamt_FA 2019 \land Wund S_Bioener$

AUSTAL View - Lakes Environmental Software & ArguSoft 23.01.2024 Seite 1 von 2

Projekt: WundS_Bioenergie_gen_gesamt_FA2019

-rojekt. wurius_bioeriergie_geri_gesamt_rAzorg				
Quelle: QUE_8 - BGA_2_MS				

	ODOR_075	ODOR_100	ODOR_150	
Emissionszeit [h]:	0	8755	0	
Emissions-Rate [kg/h oder MGE/h]:	0,000E+0	5,400E-1	0,000E+0	
Emission der Quelle [kg oder MGE]:	0,000E+0	4,728E+3	0,000E+0	
Gesamt-Emission [kg oder MGE]:	2,244E+4	9,701E+4	6,354E+5	
Gesamtzeit [h]:	8755			

Projekt: WundS Bioenergie geplant 03 NH3 mitGT10

Projekt: WundS_Bioenergie_geplant_03_NH3_mit	GT10
Quelle: QUE_1 - LW 1_1	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_10 - BGA 3_Substratlagerhalle	
	NH3
Emissionszeit [h]:	8587
Emissions-Rate [kg/h oder MGE/h]:	4,644E-2
Emission der Quelle [kg oder MGE]:	3,988E+2
Quelle: QUE_11 - BGA 3_Feststoffeintrag	
	NH3
Emissionszeit [h]:	710
Emissions-Rate [kg/h oder MGE/h]:	?
Emission der Quelle [kg oder MGE]:	7,361E+0
Quelle: QUE_12 - BGA 3_Anlieferung Gülle	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_13 - BGA 4_Substratlager	
	NH3
Emissionszeit [h]:	8587
Emissions-Rate [kg/h oder MGE/h]:	1,944E-2
Emission der Quelle [kg oder MGE]:	1,669E+2
Quelle: QUE_14 - BGA 4_Feststoffeintrag	
	NH3
Emissionszeit [h]:	710
Emissions-Rate [kg/h oder MGE/h]:	?
Emission der Quelle [kg oder MGE]:	7,361E+0
Quelle: QUE_15 - BGA 4_Abfuhr Gärrest	
	NH3
Emissionszeit [h]:	785
Emissions-Rate [kg/h oder MGE/h]:	?
Emission der Quelle [kg oder MGE]:	1,413E-1

 $Projektdatei: C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mitGT10\WundS_Bioenergie_geplant_03_NH3\WundS_Bioenergie_geplant_03_NH3\WundS_Bioenergie_geplant_03_NH3\WundS_Bioenergie_geplant_03_NH3\WundS_Bioenergie$

AUSTAL View - Lakes Environmental Software & ArguSoft 23.01.2024 Seite 1 von 4

Proiekt:	WundS	_Bioenergie_	deplant (03 N	1H3	mitGT10

Projekt: WundS_Bioenergie_geplant_03_NH3_mit0	GT10
Quelle: QUE_16 - BGA 3_Abfuhr Gärreste	
	NH3
Emissionszeit [h]:	785
Emissions-Rate [kg/h oder MGE/h]:	?
Emission der Quelle [kg oder MGE]:	1,413E-1
Quelle: QUE_17 - BGA 4_Anlieferung Gülle	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_18 - BN_Feststoffeintrag	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_19 - BN_Mistlager indoor	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_2 - LW 1_2	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_20 - BN_Mistlager outdoor	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_21 - BN_Gärrestabholung_01	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
<u> </u>	

Projektdatei: C:\Projekte\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mitGT10\WundS_Bioenergie_geplant_03_NH3_mitGT10.aus

AUSTAL View - Lakes Environmental Software & ArguSoft 23.01.2024 Seite 2 von 4

Proi	jekt:	WundS	_Bioenergie_	geplant	03	NH3	mitGT10

Projekt: WundS_Bioenergie_geplant_03_NH3_mit(GT10
Quelle: QUE_22 - BN_Gärrestabholung_02	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_23 - BGA Wöste_Separatlager	
	NH3
Emissionszeit [h]:	8587
Emissions-Rate [kg/h oder MGE/h]:	2,700E-2
Emission der Quelle [kg oder MGE]:	2,318E+2
Quelle: QUE_24 - BGA 4_Feststoffeintrag 2_optionale Erweite	erung
	NH3
Emissionszeit [h]:	698
Emissions-Rate [kg/h oder MGE/h]:	?
Emission der Quelle [kg oder MGE]:	7,237E+0
Quelle: QUE_25 - BGA 3 Gärresttrocknung	
	NH3
Emissionszeit [h]:	8587
Emissions-Rate [kg/h oder MGE/h]:	2,000E-2
Emission der Quelle [kg oder MGE]:	1,717E+2
Quelle: QUE_26 - BGA 4 Gärresttrocknung	
	NH3
Emissionszeit [h]:	8587
Emissions-Rate [kg/h oder MGE/h]:	2,000E-2
Emission der Quelle [kg oder MGE]:	1,717E+2
Quelle: QUE_3 - LW 1_3	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_4 - LW 1_4	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0

Projektdatei: C:\Projekte\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mitGT10\WundS_Bioenergie_geplant_03_NH3_mitGT10.aus

AUSTAL View - Lakes Environmental Software & ArguSoft 23.01.2024 Seite 3 von 4

Projekt: WundS_Bioenergie_geplant_03_NH3_mit0	GT10
Quelle: QUE_5 - BGA_1_MS	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	<u></u>
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_7 - GB_außen	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_8 - BGA_2_MS	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Quelle: QUE_9 - BGA 3_MS	
	NH3
Emissionszeit [h]:	0
Emissions-Rate [kg/h oder MGE/h]:	
Emission der Quelle [kg oder MGE]:	0,000E+0
Gesamt-Emission [kg oder MGE]:	1,163E+3
Gesamtzeit [h]:	8587

Variable Emissionen

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Quellen: QUE_11 (BGA 3_Feststoffeintrag)

Szenario	Stoff	Emission Dauer [h]	Emissionsrate [kg/h oder MGE/h]	Quellen-Emission [kg oder MGE]
Feststoffeintrag 2 h/d	odor_100	729	1,555E+0	1,134E+3

Quellen: QUE_12 (BGA 3_Anlieferung Gülle)

Szenario	Stoff	Emission Dauer [h]	Emissionsrate [kg/h oder MGE/h]	Quellen-Emission [kg oder MGE]
Gülleanlieferung	odor_100	332	5,040E-2	1,673E+1

Quellen: QUE_14 (BGA 4_Feststoffeintrag 1)

Szenario	Stoff	Emission Dauer [h]	Emissionsrate [kg/h oder MGE/h]	Quellen-Emission [kg oder MGE]
Feststoffeintrag 2 h/d	odor_100	729	1,555E+0	1,134E+3

Quellen: QUE_15 (BGA 4_Abfuhr Gärrest)

Szenario	Stoff	Emission Dauer [h]	Emissionsrate [kg/h oder MGE/h]	Quellen-Emission [kg oder MGE]
Gärrestabholung	odor_100	803	1,008E-1	8,094E+1

Quellen: QUE_16 (BGA 3_Abfuhr Gärreste)

Szenario	Stoff	Emission Dauer [h]	Emissionsrate [kg/h oder MGE/h]	Quellen-Emission [kg oder MGE]
Gärrestabholung	odor_100	803	1,008E-1	8,094E+1

Variable Emissionen

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Quellen: QUE_17 (BGA 4_Anlieferung Gülle)

Szenario	Stoff	Emission Dauer [h]	Emissionsrate [kg/h oder MGE/h]	Quellen-Emission [kg oder MGE]
Gülleanlieferung	odor_100	332	5,040E-2	1,673E+1

Quellen: QUE_21 (BN_Gärrestabholung_01)

Szenario Stoff		Emission	Emissionsrate	Quellen-Emission
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]
Gärrestabholung 1	odor_100	292	5,040E-2	1,472E+1

Quellen: QUE_22 (BN_Gärrestabholung_02)

Szenario Stoff		Emission	Emissionsrate	Quellen-Emission
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]
Gärrestabholung 2	odor_100	287	5,040E-2	1,446E+1

Quellen: QUE_24 (BGA 4_Feststoffeintrag 2_optionale Erweiterung)

Szenario Stoff		Emission	Emissionsrate	Quellen-Emission
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]
Feststoffeintrag 2h/d	odor_100	728	1,555E+0	1,132E+3

Variable Emissionen

Projekt: WundS_Bioenergie_geplant_03_NH3_mitGT10

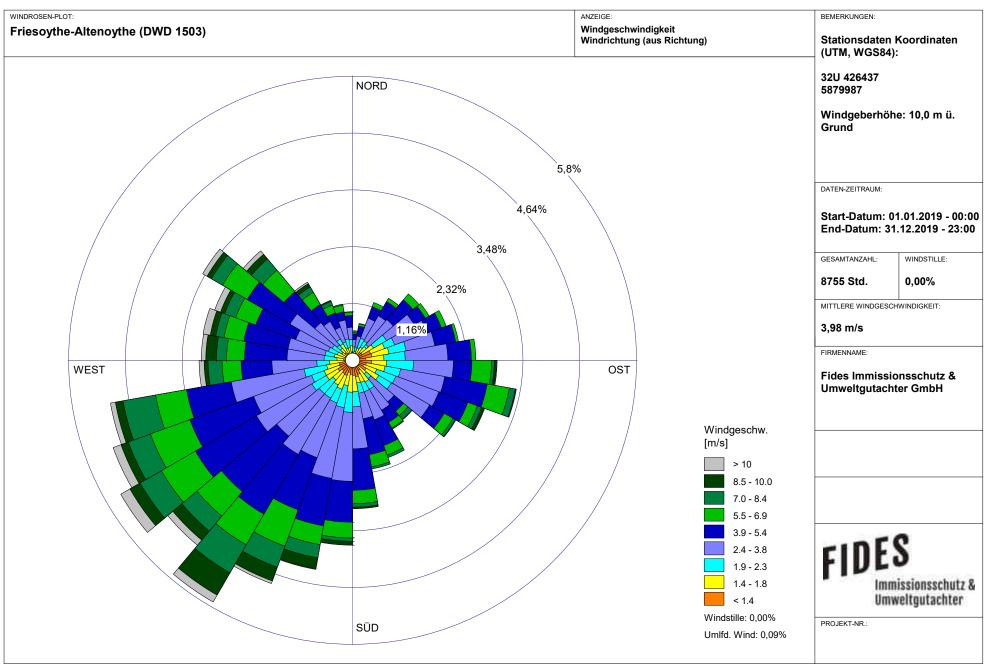
Quellen: QUE_11 (BGA 3_Feststoffeintrag)

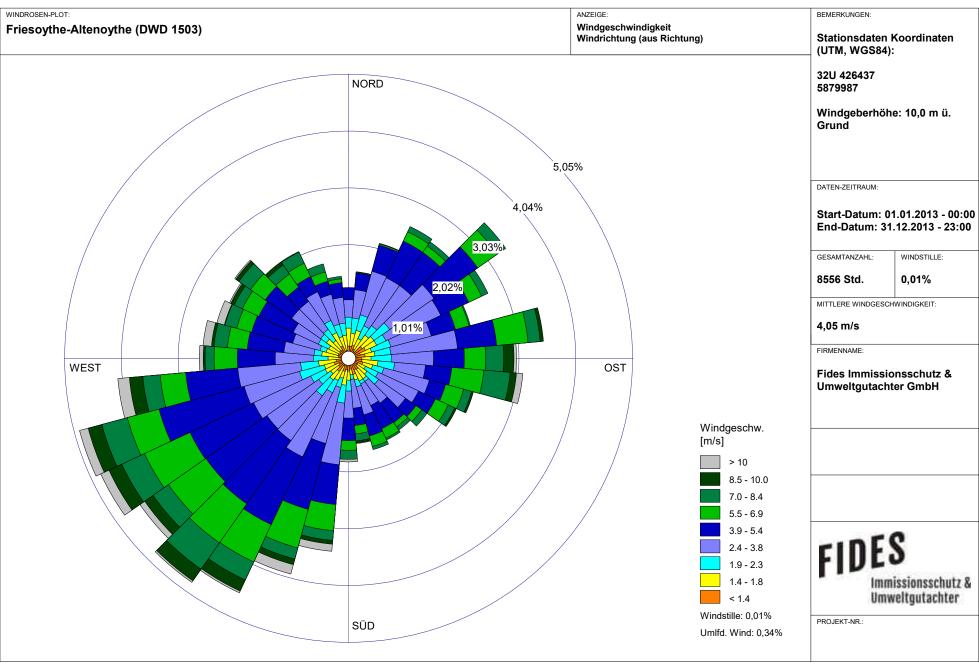
Szenario Stoff		Emission	Emissionsrate	Quellen-Emission
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]
Feststoffeintrag 2 h/d	nh3	710	1,037E-2	7,361E+0

Quellen: QUE_14 (BGA 4_Feststoffeintrag)

Szenario Stoff		Emission	Emissionsrate	Quellen-Emission
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]
Feststoffeintrag 2 h/d	nh3	710	1,037E-2	7,361E+0

Quellen: QUE_15 (BGA 4_Abfuhr Gärrest)


Szenario Stoff		Emission	Emissionsrate	Quellen-Emission
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]
Gärrestabholung	nh3	785	1,800E-4	1,413E-1


Quellen: QUE_16 (BGA 3_Abfuhr Gärreste)

Szenario Stoff		Emission	Emissionsrate	Quellen-Emission	
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]	
Gärrestabholung	nh3	785	1,800E-4	1,413E-1	

Quellen: QUE_24 (BGA 4_Feststoffeintrag 2_optionale Erweiterung)

Szenario Stoff Feststoffeintrag 2h/d nh3		Emission	Emissionsrate	Quellen-Emission
		Dauer [h]	[kg/h oder MGE/h]	[kg oder MGE]
Feststoffeintrag 2h/d	nh3	698	1,037E-2	7,237E+0

2023-11-06 11:27:44 ------TalServer:C:\Projekte\Projekte_Austal3\BN\WundS_Bioenergie_geplant_03_GT_500_2x

Ausbreitungsmodell AUSTAL, Version 3.2.1-WI-x

Copyright (c) Umweltbundesamt, Dessau-Roßlau, 2002-2023

Copyright (c) Ing.-Büro Janicke, Überlingen, 1989-2023

Arbeitsverzeichnis:

C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x

Erstellungsdatum des Programms: 2023-08-01 07:39:04 Das Programm läuft auf dem Rechner "PC03".

========	========	===== Begin	n der Eingab	e =======		:=====
				" 'Projekt-T		
> ux 324029		5-1		x-Koordinate		unktes
> uy 586505				y-Koordinate	• .	
> z0 0.20				Rauigkeitslä		
> qs 2				Qualitätsstu		
	oiekte\Akter	m\Friesovthe		319.akterm" '		
> dd 2.0	4.0	8.0		Zellengröße	(m)	
> x0 -166.0	-366.	o -846	.0	Zellengröße x-Koordinate	`der l.u. Ed	ke des
Gitters						
> nx 200	200	220	•	Anzahl Gitte	rzellen in X	(-Richtung
> v0 -214.0	-414.	o -894	.0	y-Koordinate	der l.u. Ed	ke des
Gitters						
> ny 200	200	220	•	Anzahl Gitte	rzellen in Y	'-Richtung
> xq -151.8	1 -152.7	3 77.72	76.52	-395.6	3 135.81	
8.83	-10.21	31.17	29.60	196.82	185.04	214.21
71.87	136.81	-327.06	-294.43	-240.41	-273.22	
				37.69		
> va -89.44	-112.4	1 -98.16	-122.3	36 205.12	-63.67	,
86.22	-7.13	30.35	-7.18	-12.33	4.47	-41.29
68.71	47.72	21.78	-25.88	-12.33 59.72	24.23	4.04
90.14	-4.52	-112.	64 -26.6	-8.83		
> hq 5.00	5.00	5.00	5.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	10.00	10.00		
> aq 10.90	13.14	13.05	12.53	15.14	47.95	
29.58	30.00	10.00	5.00	0.00 10.00 15.14 20.00	10.00	5.96
5.46	5.00	/6.14	8.60	16.97	18.86	5.41
5.52	14.86	10.32	0.00	0.00		
				13.20		
2.06	20.00	3.00	3.00	15.00	3.00	4.18
4.89	3.00	4.11	3.00	19.25	15.90	3.92
2.58	6.56	2.88	0.00	0.00		
> cq 5.00	5.00	5.00	5.00	3.00	5.00	
				6.00		
				6.00		3.00
				0.00		
				306.87		
				-37.42		131.50
133.73	25.08	17.03	312.75	3.42	324.82	

```
354.05
            322.43
                         356.99
                                      358.07
                                                   0.00
                                                                0.00
> dq 0.00
                  0.00
                              0.00
                                           0.00
                                                        0.00
                                                                     0.00
0.00
             0.00
                         0.00
                                      0.00
                                                   0.00
                                                                0.00
                                                                            0.00
   0.00
                0.00
                            0.00
                                         0.00
                                                      0.00
                                                                   0.00
                                                                               0.00
      0.00
                   0.00
                               0.00
                                            0.25
                                                         0.25
                                           0.00
                               0.00
> vq 0.00
                  0.00
                                                        0.00
                                                                     0.00
0.00
             0.00
                         0.00
                                      0.00
                                                   0.00
                                                                0.00
                                                                            0.00
   0.00
                0.00
                            0.00
                                         0.00
                                                      0.00
                                                                   0.00
                                                                               0.00
      0.00
                   0.00
                                0.00
                                            19.60
                                                         19.60
                  0.00
                               0.00
                                           0.00
                                                        0.00
                                                                     0.00
> tq 0.00
0.00
             0.00
                         0.00
                                      0.00
                                                   0.00
                                                                0.00
                                                                            0.00
   0.00
                0.00
                            0.00
                                         0.00
                                                      0.00
                                                                   0.00
                                                                               0.00
                   0.00
      0.00
                               0.00
                                            200.00
                                                         200.00
> 1q 0.0000
                  0.0000
                               0.0000
                                           0.0000
                                                        0.0000
                                                                     0.0000
0.0000
                                                                0.0000
            0.0000
                         0.0000
                                      0.0000
                                                   0.0000
                                                                            0.0000
   0.0000
                0.0000
                            0.0000
                                         0.0000
                                                      0.0000
                                                                   0.0000
                                                   0.0000
0.0000
            0.0000
                         0.0000
                                      0.0000
                                                                0.0000
> rq 0.00
                  0.00
                              0.00
                                           0.00
                                                        0.00
                                                                     0.00
0.00
            0.00
                         0.00
                                      0.00
                                                   0.00
                                                                0.00
                                                                            0.00
                0.00
   0.00
                            0.00
                                         0.00
                                                      0.00
                                                                   0.00
                                                                               0.00
      0.00
                   0.00
                               0.00
                                            0.00
                                                         0.00
                                           0.0000
> zq 0.0000
                  0.0000
                               0.0000
                                                        0.0000
                                                                     0.0000
0.0000
            0.0000
                         0.0000
                                      0.0000
                                                   0.0000
                                                                0.0000
                                                                            0.0000
   0.0000
                0.0000
                            0.0000
                                         0.0000
                                                      0.0000
                                                                   0.0000
0.0000
             0.0000
                         0.0000
                                      0.0000
                                                   0.1000
                                                                0.1000
> sq 0.00
                  0.00
                               0.00
                                           0.00
                                                        0.00
                                                                     0.00
0.00
            0.00
                         0.00
                                      0.00
                                                   0.00
                                                                0.00
                                                                            0.00
   0.00
                0.00
                            0.00
                                         0.00
                                                      0.00
                                                                   0.00
                                                                               0.00
                   0.00
                                0.00
                                                         0.00
      0.00
                                            0.00
> odor_075 0
                                     0
                                                               712
                                                                           0
                        0
                                                  0
               0
                           0
                                                     0
                  0
                               0
                                           0
                                                        0
                                                                     0
                                                                                  0
        0
                                                                           150
                                     0
                                                               0
> odor_100 0
                        0
                                                  0
               360
                                                     270
  150
                           ?
                                        ?
                                                                                  ?
                                           232
                                                        180
                               150
                                                                     300
        ?
                     90
                                               278
                                                           278
> odor 150 5040
                                                  5040
                        5040
                                     5040
                                                                           0
  0
                           0
                                        0
                                                                  0
                                                                              0
                                                                                  0
                  a
                               a
                                                        a
                                                                     0
                                  0
        0
                     0
                                               0
                                                           0
Die Höhe hq der Quelle 1 beträgt weniger als 10 m.
Die Höhe hq der Quelle 2 beträgt weniger als 10 m.
Die Höhe hq der Quelle 3 beträgt weniger als 10 m.
Die Höhe hq der Quelle 4 beträgt weniger als 10 m.
Die Höhe hq der Quelle 5 beträgt weniger als 10 m.
Die Höhe hq der Quelle 6 beträgt weniger als 10 m.
Die Höhe hq der Quelle 7 beträgt weniger als 10 m.
Die Höhe hq der Quelle 8 beträgt weniger als 10 m.
Die Höhe hq der Quelle 9 beträgt weniger als 10 m.
```

Die Höhe hq der Quelle 10 beträgt weniger als 10 m. Die Höhe hq der Quelle 11 beträgt weniger als 10 m.

```
Die Höhe hq der Quelle 12 beträgt weniger als 10 m.
Die Höhe hq der Quelle 13 beträgt weniger als 10 m.
Die Höhe hq der Quelle 14 beträgt weniger als 10 m.
Die Höhe hq der Quelle 15 beträgt weniger als 10 m.
Die Höhe hq der Quelle 16 beträgt weniger als 10 m.
Die Höhe hq der Quelle 17 beträgt weniger als 10 m.
Die Höhe hq der Quelle 18 beträgt weniger als 10 m.
Die Höhe hq der Quelle 19 beträgt weniger als 10 m.
Die Höhe hq der Quelle 20 beträgt weniger als 10 m.
Die Höhe ha der Quelle 21 beträgt weniger als 10 m.
Die Höhe hq der Quelle 22 beträgt weniger als 10 m.
Die Höhe ha der Quelle 23 beträgt weniger als 10 m.
Die Zeitreihen-Datei
"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/zeitreihe
.dmna" wird verwendet.
Es wird die Anemometerhöhe ha=14.6 m verwendet.
Die Angabe "az C:\Projekte\Akterm\Friesoythe DWD 1503 2019.akterm" wird
ignoriert.
Prüfsumme AUSTAL d4279209
Prüfsumme TALDIA 7502b53c
Prüfsumme SETTINGS d0929e1c
Prüfsumme SERIES
                 10ca1e0c
______
TMT: Auswertung der Ausbreitungsrechnung für "odor"
TMT: 365 Mittel (davon ungültig: 0)
TMT: Datei
"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor-j00z
01" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor-j00s
01" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte Austal3/BN/WundS Bioenergie geplant 03 GT 500 2x/odor-j00z
02" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor-j00s
02" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor-j00z
03" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor-j00s
03" ausgeschrieben.
TMT: Auswertung der Ausbreitungsrechnung für "odor_075"
TMT: 365 Mittel (davon ungültig: 0)
TMT: Datei
"C:/Projekte/Projekte Austal3/BN/WundS Bioenergie geplant 03 GT 500 2x/odor 075-
j00z01" ausgeschrieben.
"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_075-
j00s01" ausgeschrieben.
```

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_075-j00z02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_075-j00s02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_075-j00z03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_075-j00s03" ausgeschrieben.

TMT: Auswertung der Ausbreitungsrechnung für "odor_100"

TMT: 365 Mittel (davon ungültig: 0)

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_100-j00z01" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_100-j00s01" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_100-j00z02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_100-j00s02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_100-j00z03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_100-j00s03" ausgeschrieben.

TMT: Auswertung der Ausbreitungsrechnung für "odor_150"

TMT: 365 Mittel (davon ungültig: 0)

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_150-j00z01" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_150-j00s01" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_150-j00z02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_150-j00s02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_150-j00z03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_geplant_03_GT_500_2x/odor_150-j00s03" ausgeschrieben.

TMT: Dateien erstellt von AUSTAL_3.2.1-WI-x.

Auswertung der Ergebnisse:

DEP: Jahresmittel der Deposition

J00: Jahresmittel der Konzentration/Geruchsstundenhäufigkeit

Tnn: Höchstes Tagesmittel der Konzentration mit nn Überschreitungen Snn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen

WARNUNG: Eine oder mehrere Quellen sind niedriger als 10 m.

Die im folgenden ausgewiesenen Maximalwerte sind daher
möglicherweise nicht relevant für eine Beurteilung!

Maximalwert der Geruchsstundenhäufigkeit bei z=1.5 m

```
ODOR J00: 100.0 % (+/- 0.0) bei x= -3 m, y= -3 m (1: 82,106) ODOR_075 J00: 100.0 % (+/- 0.0) bei x= -394 m, y= 198 m (3: 57,137) ODOR_100 J00: 100.0 % (+/- 0.0) bei x= -3 m, y= 3 m (1: 82,109) ODOR_150 J00: 88.3 % (+/- 0.1) bei x= -146 m, y= -106 m (3: 88, 99) ODOR_MOD J00: 100.0 % (+/- ? ) bei x= -155 m, y= -109 m (1: 6, 53)
```

2023-11-07 01:16:59 AUSTAL beendet.

Die folgenden Dateien wurden in

"C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_GT_50
0_2x\Od-Diff-odor_mod-d50sx600sy600x402767y5864806-z.dmna" kombiniert mit einem
Faktor:

"C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_GT_50
0_2x\odor_mod-d50sx600sy600x402767y5864806-z.dmna" mit Wert 1

"C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_gen_gesamt_FA201
9\odor mod-d50sx600sy600x402767y5864806-z.dmna" mit Wert -1

Ausbreitungsmodell AUSTAL, Version 3.1.2-WI-x

Copyright (c) Umweltbundesamt, Dessau-Roßlau, 2002-2021

Copyright (c) Ing.-Büro Janicke, Überlingen, 1989-2021

Arbeitsverzeichnis:

C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019

Erstellungsdatum des Programms: 2021-08-09 08:20:41 Das Programm läuft auf dem Rechner "PC03".

========		== Beginn der	Eingabe ===		
> ti "WundS	_Bioenergie_P01"	_	'Proje	ekt-Titel	
> ux 324029			'x-Koo	ordinate des	Bezugspunktes
> uy 586505	3		'y-Koo	ordinate des	Bezugspunktes
> z0 0.20			'Rauig	gkeitslänge	
> qs 2				itätsstufe	
	ojekte\Akterm\Fri	iesoythe DWD	_		Datei
> dd 2.0	4.0	8.0	Zelle 'Zelle		
> x0 -166.0	-366.0	-846.0		• , ,	<pre>1.u. Ecke des</pre>
Gitters					
> nx 200	200	220	'Anzał	nl Gitterzell	len in X-Richtung
> y0 -214.0	-414.0	-894.0			1.u. Ecke des
Gitters			•		
> ny 200	200	220	'Anzal	nl Gitterzell	len in Y-Richtung
•	1 -152.73				
	135.81				
> yq -89.44	-112.41	-98.16	-122.36	21.78	74.85
205.12					
> hq 5.00		5.00	5.00	0.00	5.00
0.00	0.00				
> aq 10.90	13.14	13.05	12.53	76.14	0.00
15.14	47.95				
> bq 3.04	3.41	3.44	3.09	4.11	0.00
13.20	6.94				
> cq 5.00	5.00	5.00	5.00	5.00	5.00
3.00	5.00				
> wq 271.47	267.56	267.74	269.22	17.03	0.00
306.87	358.96				
> dq 0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00				
> vq 0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00				
> tq 0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00				
> 1q 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000				
> rq 0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00				
> zq 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000				
> sq 0.00	0.00	0.00	0.00	0.00	0.00

```
0.00
             0.00
> odor_075 0
                                      0
                                                   0
                                                                 0
                                                                              0
                         0
  712
> odor 100 0
                         a
                                      0
                                                                 150
                                                                              2778
               150
  0
                         5040
                                      5040
                                                   5040
> odor 150 5040
                                                                 а
                                                                              0
  0
```

```
Die Höhe hq der Quelle 1 beträgt weniger als 10 m. Die Höhe hq der Quelle 2 beträgt weniger als 10 m. Die Höhe hq der Quelle 3 beträgt weniger als 10 m. Die Höhe hq der Quelle 4 beträgt weniger als 10 m. Die Höhe hq der Quelle 5 beträgt weniger als 10 m. Die Höhe hq der Quelle 6 beträgt weniger als 10 m. Die Höhe hq der Quelle 7 beträgt weniger als 10 m. Die Höhe hq der Quelle 8 beträgt weniger als 10 m.
```

AKTerm "C:/Projekte/Akterm/Friesoythe_DWD_1503_2019.akterm" mit 8760 Zeilen, Format 3

Es wird die Anemometerhöhe ha=14.6 m verwendet.

Verfügbarkeit der AKTerm-Daten 99.9 %.

Prüfsumme AUSTAL 5a45c4ae Prüfsumme TALDIA abbd92e1 Prüfsumme SETTINGS d0929e1c Prüfsumme AKTerm 77f1d933

TMT: Auswertung der Ausbreitungsrechnung für "odor"

TMT: 365 Mittel (davon ungültig: 0)

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor-j00z01" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor-j00s01" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor-j00z02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor-j00s02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor-j00z03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor-j00s03" ausgeschrieben.

TMT: Auswertung der Ausbreitungsrechnung für "odor_075"

TMT: 365 Mittel (davon ungültig: 0)

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_075-j00

z01" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_075-j00 s01" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_075-j00 z02" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_075-j00 s02" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_075-j00 z03" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_075-j00 s03" ausgeschrieben. TMT: Auswertung der Ausbreitungsrechnung für "odor 100" TMT: 365 Mittel (davon ungültig: 0) TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_100-j00 z01" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_100-j00 s01" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_100-j00 z02" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte Austal3/BN/WundS Bioenergie gen gesamt FA2019/odor 100-j00 s02" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_100-j00 z03" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_100-j00 s03" ausgeschrieben. TMT: Auswertung der Ausbreitungsrechnung für "odor_150" TMT: 365 Mittel (davon ungültig: 0) TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_150-j00 z01" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_150-j00 s01" ausgeschrieben. TMT: Datei "C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_150-j00 z02" ausgeschrieben. TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_150-j00 s02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_150-j00 z03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/BN/WundS_Bioenergie_gen_gesamt_FA2019/odor_150-j00 s03" ausgeschrieben.

TMT: Dateien erstellt von AUSTAL 3.1.2-WI-x.

Auswertung der Ergebnisse:

DEP: Jahresmittel der Deposition

J00: Jahresmittel der Konzentration/Geruchsstundenhäufigkeit

Tnn: Höchstes Tagesmittel der Konzentration mit nn Überschreitungen Snn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen

WARNUNG: Eine oder mehrere Quellen sind niedriger als 10 m.

Die im folgenden ausgewiesenen Maximalwerte sind daher möglicherweise nicht relevant für eine Beurteilung!

Maximalwert der Geruchsstundenhäufigkeit bei z=1.5 m

```
ODOR J00: 100.0 % (+/- 0.0 ) bei x= -394 m, y= 198 m (3: 57,137) ODOR_075 J00: 100.0 % (+/- 0.0 ) bei x= -394 m, y= 198 m (3: 57,137) ODOR_100 J00: 99.0 % (+/- 0.1 ) bei x= 168 m, y= -60 m (2:134, 89) ODOR_150 J00: 88.3 % (+/- 0.1 ) bei x= -146 m, y= -106 m (3: 88, 99) ODOR_MOD J00: 100.0 % (+/- ? ) bei x= -153 m, y= -111 m (1: 7, 52)
```

2023-06-15 09:34:48 AUSTAL beendet.

Ausbreitungsmodell AUSTAL, Version 3.2.1-WI-x Copyright (c) Umweltbundesamt, Dessau-Roßlau, 2002-2023 Copyright (c) Ing.-Büro Janicke, Überlingen, 1989-2023

Arbeitsverzeichnis:

C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_mi
tGT10

Erstellungsdatum des Programms: 2023-08-01 07:39:04 Das Programm läuft auf dem Rechner "NB03".

========	========	===== Begin	n der Einga	abe ======	========	=====
		geplant_03_N	H3_mitGT10"	' 'Projekt-Tit	el	
> ux 324029	63			'x-Koordinate	des Bezugsp	unktes
> uy 586505	3			'y-Koordinate	des Bezugsp	unktes
> z0 0.20				'Rauigkeitslä	nge	
> qs 2				'Qualitätsstu	fe	
> az						
"C:\Projekt	e\Akterm\Fri	esoythe-Alte	noythe_DWD_	_01503_2013_Ni	ederschlag.a	ıkterm"
'AKT-Datei						
> ri ?						
> dd 2.0	4.0	8.0		'Zellengröße	, ,	
> x0 -166.0	-366.	846	.0	'x-Koordinate	der l.u. Ed	ke des
Gitters						
> nx 200	200	220		'Anzahl Gitte	rzellen in X	K-Richtung
	-414.	ð -894	.0	'y-Koordinate	der l.u. Ed	ke des
Gitters						
				'Anzahl Gitte		
				-395.6		
8.83	-10.21				185.04	214.21
71.87	136.81	-327.06	-294.43	-240.41		
	-248.04	169.95	162.49	37.69		
				36 205.12		
86.22	-7.13	30.35	-7.18	-12.33	4.47	-41.29
				59.72		4.04
90.14	-4.52	-112.0	64 -26.	-8.83		
				0.00		
				0.00		
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	10.0	10.00		
				15.14		
29.58		10.00	5.00	20.00	10.00	
5.46	5.00	76.14	8.60	16.97 0.00 13.20	18.86	5.41
5.52	14.86	10.32	0.00	0.00		
> bq 3.04	3.41	3.44	3.09	13.20	6.94	
				15.00		
				19.25		3.92
				0.00		
•				3.00		2 00
5.00	6.00	3.00	3.00	6.00	3.00	3.00

```
3.00
                           5.00
                                       3.00
   3.00
                                                   6.00
                                                                2.00
                                                                            3.00
      3.00
                 2.00
                              3.00
                                          0.00
                                                      0.00
                 267.56
                             267.74
                                         269.22
> wq 271.47
                                                      306.87
                                                                  358.96
                                                 -37.42
265.69
            356.53
                        269.42
                                    266.82
                                                             34.18
                                                                         131.50
   133.73
               25.08
                           17.03
                                       312.75
                                                   3.42
                                                                324.82
                        356.99
            322.43
354.05
                                    358.07
                                                 0.00
                                                             0.00
                                                                  0.00
> dq 0.00
                 0.00
                             0.00
                                         0.00
                                                     0.00
0.00
            0.00
                        0.00
                                    0.00
                                                0.00
                                                             0.00
                                                                         0.00
   0.00
               0.00
                           0.00
                                       0.00
                                                   0.00
                                                                0.00
                                                                            0.00
      0.00
                  0.00
                              0.00
                                          0.25
                                                      0.25
> vq 0.00
                 0.00
                             0.00
                                         0.00
                                                      0.00
                                                                  0.00
0.00
            0.00
                        0.00
                                    0.00
                                                 0.00
                                                             0.00
                                                                         0.00
   0.00
               0.00
                           0.00
                                       0.00
                                                   0.00
                                                                0.00
                                                                            0.00
      0.00
                  0.00
                              0.00
                                          19.60
                                                       19.60
                 0.00
                                                      0.00
                                                                  0.00
> tq 0.00
                             0.00
                                         0.00
0.00
            0.00
                        0.00
                                    0.00
                                                0.00
                                                             0.00
                                                                         0.00
   0.00
               0.00
                           0.00
                                       0.00
                                                   0.00
                                                                0.00
                                                                            0.00
      0.00
                  0.00
                              0.00
                                          200.00
                                                       200.00
> 1q 0.0000
                 0.0000
                             0.0000
                                         0.0000
                                                     0.0000
                                                                  0.0000
0.0000
            0.0000
                        0.0000
                                    0.0000
                                                0.0000
                                                             0.0000
                                                                         0.0000
   0.0000
               0.0000
                           0.0000
                                       0.0000
                                                    0.0000
                                                                0.0000
0.0000
            0.0000
                        0.0000
                                    0.0000
                                                0.0000
                                                             0.0000
> rq 0.00
                             0.00
                                         0.00
                                                     0.00
                                                                  0.00
                 9.99
0.00
            0.00
                        0.00
                                    0.00
                                                 0.00
                                                             0.00
                                                                         0.00
               0.00
   0.00
                           0.00
                                       0.00
                                                   0.00
                                                                0.00
                                                                            0.00
      0.00
                  0.00
                              0.00
                                          0.00
                                                      0.00
                 0.0000
                             0.0000
                                         0.0000
                                                     0.0000
> zq 0.0000
                                                                  0.0000
0.0000
            0.0000
                        0.0000
                                    0.0000
                                                0.0000
                                                             0.0000
                                                                         0.0000
   0.0000
               0.0000
                           0.0000
                                       0.0000
                                                   0.0000
                                                                0.0000
0.0000
            0.0000
                        0.0000
                                    0.0000
                                                0.1000
                                                             0.1000
> sq 0.00
                 0.00
                             0.00
                                                      0.00
0.00
            0.00
                        0.00
                                    0.00
                                                0.00
                                                             0.00
                                                                         0.00
   0.00
                           0.00
                                       0.00
                                                   0.00
                                                                            0.00
               0.00
                                                                0.00
      0.00
                  0.00
                              0.00
                                          0.00
                                                       0.00
                                           0
                   0
                               0
                                                        0
                                                                                0
> nh3
       0
          0.0129
                                               0.0054
 ?
             0
                                                 0
                                                              0
                                                                          0
                                        0.0055555556 0.0055555556
                            ?
Die Höhe hq der Quelle 1 beträgt weniger als 10 m.
Die Höhe hq der Quelle 2 beträgt weniger als 10 m.
Die Höhe hq der Quelle 3 beträgt weniger als 10 m.
Die Höhe hq der Quelle 4 beträgt weniger als 10 m.
Die Höhe hq der Quelle 5 beträgt weniger als 10 m.
Die Höhe hq der Quelle 6 beträgt weniger als 10 m.
Die Höhe hq der Quelle 7 beträgt weniger als 10 m.
Die Höhe hq der Quelle 8 beträgt weniger als 10 m.
Die Höhe hq der Quelle 9 beträgt weniger als 10 m.
```

Die Höhe hq der Quelle 10 beträgt weniger als 10 m. Die Höhe hq der Quelle 11 beträgt weniger als 10 m. Die Höhe hq der Quelle 12 beträgt weniger als 10 m. Die Höhe hq der Quelle 13 beträgt weniger als 10 m. Die Höhe hq der Quelle 14 beträgt weniger als 10 m.

```
Die Höhe hq der Quelle 15 beträgt weniger als 10 m.
Die Höhe hq der Quelle 16 beträgt weniger als 10 m.
Die Höhe hq der Quelle 17 beträgt weniger als 10 m.
Die Höhe hq der Quelle 18 beträgt weniger als 10 m.
Die Höhe hq der Quelle 19 beträgt weniger als 10 m.
Die Höhe hq der Quelle 20 beträgt weniger als 10 m.
Die Höhe hq der Quelle 21 beträgt weniger als 10 m.
Die Höhe hq der Quelle 22 beträgt weniger als 10 m.
Die Höhe hq der Quelle 23 beträgt weniger als 10 m.
Die Zeitreihen-Datei
"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m
itGT10/zeitreihe.dmna" wird verwendet.
Es wird die Anemometerhöhe ha=14.7 m verwendet.
Die Angabe "az
C:\Projekte\Akterm\Friesoythe-Altenoythe_DWD_01503_2013_Niederschlag.akterm"
wird ignoriert.
Prüfsumme AUSTAL
                  d4279209
Prüfsumme TALDIA
                  7502b53c
Prüfsumme SETTINGS d0929e1c
Prüfsumme SERIES dff7275b
Gesamtniederschlag 757 mm in 822 h.
______
TMT: Auswertung der Ausbreitungsrechnung für "nh3"
TMT: 365 Mittel (davon ungültig: 3)
TMT: Datei
"C:/Projekte/Projekte Austal3/WundS Bioenergie/WundS Bioenergie geplant 03 NH3 m
itGT10/nh3-j00z01" ausgeschrieben.
"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m
itGT10/nh3-j00s01" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m
itGT10/nh3-depz01" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m
itGT10/nh3-deps01" ausgeschrieben.
"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m
itGT10/nh3-wetz01" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte Austal3/WundS Bioenergie/WundS Bioenergie geplant 03 NH3 m
itGT10/nh3-wets01" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m
itGT10/nh3-dryz01" ausgeschrieben.
TMT: Datei
"C:/Projekte/Projekte Austal3/WundS Bioenergie/WundS Bioenergie geplant 03 NH3 m
itGT10/nh3-drys01" ausgeschrieben.
"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m
```

itGT10/nh3-j00z02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-j00s02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-depz02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-deps02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-wetz02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_mitGT10/nh3-wets02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-dryz02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-drys02" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-j00z03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-j00s03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_mitGT10/nh3-depz03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_mitGT10/nh3-deps03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_mitGT10/nh3-wetz03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_m itGT10/nh3-wets03" ausgeschrieben.

TMT: Datei

"C:/Projekte/Projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_mitGT10/nh3-dryz03" ausgeschrieben.

TMT: Datei

 $\label{lem:c:/projekte/projekte_Austal3/WundS_Bioenergie/WundS_Bioenergie_geplant_03_NH3_mitGT10/nh3-drys03" ausgeschrieben.$

TMT: Dateien erstellt von AUSTAL 3.2.1-WI-x.

Auswertung der Ergebnisse:

DEP: Jahresmittel der Deposition

DRY: Jahresmittel der trockenen Deposition WET: Jahresmittel der nassen Deposition

J00: Jahresmittel der Konzentration/Geruchsstundenhäufigkeit

Tnn: Höchstes Tagesmittel der Konzentration mit nn Überschreitungen Snn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen

WARNUNG: Eine oder mehrere Quellen sind niedriger als 10 m.

Die im folgenden ausgewiesenen Maximalwerte sind daher möglicherweise nicht relevant für eine Beurteilung!

Maximalwerte, Deposition

NH3 DEP : 1247.9850 kg/(ha*a) (+/- 0.1%) bei x= 177 m, y= -1 m

(1:172,107)

NH3 DRY: 1246.1763 kg/(ha*a) (+/- 0.1%) bei x= 177 m, y= -1 m

(1:172,107)

NH3 WET: 1.8566 kg/(ha*a) (+/- 0.2%) bei x= 179 m, y= -1 m (1:173,107)

Maximalwerte, Konzentration bei z=1.5 m

NH3 J00 : 265.77 $\mu g/m^3$ (+/- 0.1%) bei x= 177 m, y= -1 m (1:172,107)

2023-11-09 19:11:23 AUSTAL beendet.

C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mi
tGT10\nh3-dryf01.dmna. Scale=1,6471

C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mi
tGT10\nh3-wetf01.dmna. Scale=0,8235

C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mi
tGT10\n[wald]-depf01.dmna

Projekt: WundS_Bioenergie_geplant_02_mitBN_geplant

1 Analyse-Punkte: ANP_1 X [m]: 403169,00 Y [m]: 5864497,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
ODOR: Geruchsstoff (unbewertet)	ASW	0,5	%	0 %
ODOR: Geruchsstoff (unbewertet)	ASWF	0,5	%	
ODOR: Geruchsstoff (unbewertet)	J00	0,5	%	0 %
ODOR: Geruchsstoff (unbewertet)	J00F	0,5	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	0,5	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	0,5	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	0,5	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	0,5	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	0	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	0	%	
ODOR_MOD	ASW	0,5	%	
ODOR_MOD	J00	0,5	%	

2 Analyse-Punkte: ANP_2	X [m] : 402519,00	Y [m] : 5864499,00	
-------------------------	--------------------------	---------------------------	--

Vertikale Schichten [m]: 0 - 3

AUSTAL View - Lakes Environmental Software & ArguSoft

Projekt: WundS_Bioenergie_geplant_02_mitBN_geplant

2 Analyse-Punkte: ANP_2 X [m]: 402519,00 Y [m]: 5864499,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
ODOR: Geruchsstoff (unbewertet)	ASW	0,6	%	0 %
ODOR: Geruchsstoff (unbewertet)	ASWF	0,6	%	
ODOR: Geruchsstoff (unbewertet)	J00	0,6	%	0 %
ODOR: Geruchsstoff (unbewertet)	J00F	0,6	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	0,6	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	0,6	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	0,6	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	0,6	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	0	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	0	%	
ODOR_MOD	ASW	0,6	%	
ODOR_MOD	J00	0,6	%	

3 Analyse-Punkte: ANP_3 X [m]: 402364,00 Y [m]: 5864609,00	
--	--

Vertikale Schichten [m]: 0 - 3

AUSTAL View - Lakes Environmental Software & ArguSoft

Projekt: WundS_Bioenergie_geplant_02_mitBN_geplant

3 Analyse-Punkte: ANP_3 X [m]: 402364,00 Y [m]: 5864609,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
ODOR: Geruchsstoff (unbewertet)	ASW	0,8	%	0 %
ODOR: Geruchsstoff (unbewertet)	ASWF	0,8	%	
ODOR: Geruchsstoff (unbewertet)	J00	0,8	%	0 %
ODOR: Geruchsstoff (unbewertet)	J00F	0,8	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	0,8	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	0,8	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	0,8	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	0,8	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	0	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	0	%	
ODOR_MOD	ASW	0,8	%	
ODOR_MOD	J00	0,8	%	

4	Analyse-Punkte: ANP_4	X [m] : 402274,00	Y [m] : 5864911,00	
	-	- · ·	• • ·	

Vertikale Schichten [m]: 0 - 3

AUSTAL View - Lakes Environmental Software & ArguSoft

Projekt: WundS_Bioenergie_geplant_02_mitBN_geplant

4 Analyse-Punkte: ANP_4 X [m]: 402274,00 Y [m]: 5864911,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
ODOR: Geruchsstoff (unbewertet)	ASW	0,7	%	0 %
ODOR: Geruchsstoff (unbewertet)	ASWF	0,7	%	
ODOR: Geruchsstoff (unbewertet)	J00	0,7	%	0 %
ODOR: Geruchsstoff (unbewertet)	J00F	0,7	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	0,7	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	0,7	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	0,7	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	0,7	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	0	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	0	%	0 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	0	%	
ODOR_MOD	ASW	0,7	%	
ODOR_MOD	J00	0,7	%	

Projekt: WundS_Bioenergie_geplant_02_mitBN_geplant

Auswertung der Ergebnisse:

J00/Y00: Jahresmittel der Konzentration

Tnn/Dnn: Höchstes Tagesmittel der Konzentration mit nn ÜberschreitungenSnn/Hnn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen

DEP: Jahresmittel der Deposition

AUSTAL View - Lakes Environmental Software & ArguSoft

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Analyse-Punkte: ANP_1 X [m]: 403169,00 Y [m]: 5864497,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
OD-DIFF	ASW	0	%	
ODOR: Geruchsstoff (unbewertet)	ASW	7,7	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	ASWF	7,8	%	
ODOR: Geruchsstoff (unbewertet)	J00	7,7	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	J00F	7,8	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0,1	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0,1	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0,1	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0,1	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	0,9	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	0,9	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	0,9	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	0,9	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	7	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	7,1	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	7	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	7,1	%	
ODOR_MOD	ASW	11,2	%	
ODOR_MOD	J00	11,2	%	

2 Analyse-Punkte: ANP_2 X [m]: 402519,00 Y [m]: 5864499,00

Vertikale Schichten [m]: 0 - 3

 $Projektdatei: C:\label{lem:projekte_p$ AUSTAL View - Lakes Environmental Software & ArguSoft

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

2 Analyse-Punkte: ANP_2 X [m]: 402519,00 **Y [m]**: 5864499,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
OD-DIFF	ASW	-0,1	%	
ODOR: Geruchsstoff (unbewertet)	ASW	5,8	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	ASWF	5,9	%	
ODOR: Geruchsstoff (unbewertet)	J00	5,7	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	J00F	5,8	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0,1	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0,1	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0,1	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0,1	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	1	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	1	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	1	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	1	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	5,2	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	5,3	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	5	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	5,1	%	
ODOR_MOD	ASW	8,4	%	
ODOR_MOD	J00	8,2	%	

Analyse-Punkte: ANP_3 X [m]: 402364,00 Y [m]: 5864609,00 3

Vertikale Schichten [m]: 0 - 3

 $Projektdatei: C:\label{lem:projekte_p$ AUSTAL View - Lakes Environmental Software & ArguSoft

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

3 Analyse-Punkte: ANP_3 X [m]: 402364,00 Y [m]: 5864609,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
OD-DIFF	ASW	-0,4	%	
ODOR: Geruchsstoff (unbewertet)	ASW	6,4	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	ASWF	6,5	%	
ODOR: Geruchsstoff (unbewertet)	J00	6,3	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	J00F	6,4	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0,2	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0,2	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0,2	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0,2	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	1,3	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	1,3	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	1,3	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	1,3	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	5,6	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	5,7	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	5,5	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	5,6	%	
ODOR_MOD	ASW	9,3	%	
ODOR_MOD	J00	9,1	%	

4 Analyse-Punkte: ANP_4 X [m]: 402274,00 Y [m]: 5864911,00

Vertikale Schichten [m]: 0 - 3

 $Projektdatei: C:\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_GT_500_2x\\\Wund$

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

4 Analyse-Punkte: ANP_4 X [m]: 402274,00 Y [m]: 5864911,00

Vertikale Schichten [m]: 0 - 3

Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
OD-DIFF	ASW	-0,6	%	
ODOR: Geruchsstoff (unbewertet)	ASW	7,8	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	ASWF	7,9	%	
ODOR: Geruchsstoff (unbewertet)	J00	8	%	0,1 %
ODOR: Geruchsstoff (unbewertet)	J00F	8,1	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASW	0,6	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	ASWF	0,6	%	
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00	0,6	%	0 %
ODOR_075: Geruchsstoff (Bewertungsfaktor 0.75)	J00F	0,6	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASW	2,2	%	0,1 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	ASWF	2,3	%	
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00	2,2	%	0 %
ODOR_100: Geruchsstoff (Bewertungsfaktor 1.00)	J00F	2,2	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASW	5,9	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	ASWF	6	%	
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00	6,1	%	0,1 %
ODOR_150: Geruchsstoff (Bewertungsfaktor 1.50)	J00F	6,2	%	
ODOR_MOD	ASW	10,7	%	
ODOR_MOD	J00	11	%	

Projekt: WundS_Bioenergie_geplant_03_GT_500_2x

Auswertung der Ergebnisse:

J00/Y00: Jahresmittel der Konzentration

Tnn/Dnn: Höchstes Tagesmittel der Konzentration mit nn Überschreitungen Höchstes Stundenmittel der Konzentration mit nn Überschreitungen Snn/Hnn:

DEP: Jahresmittel der Deposition

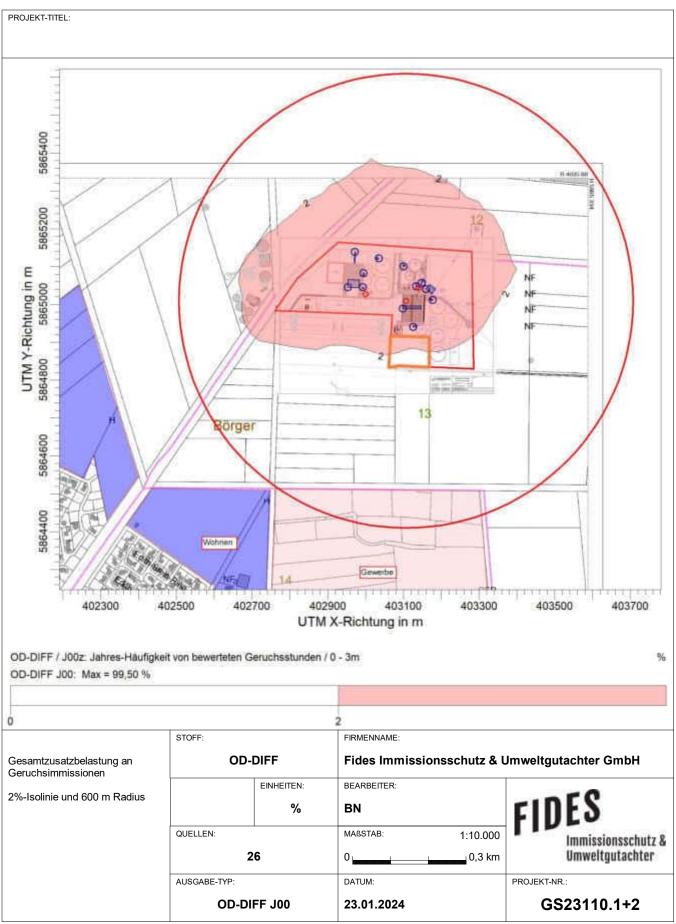
Projekt: WundS_Bioenergie_geplant_03_NH3_mitGT10

1 Analyse-Punkte: ANP_5 X [m]: 403123,00 Y [m]: 5864903,00

Vertikale Schichten [m]: 0 - 3

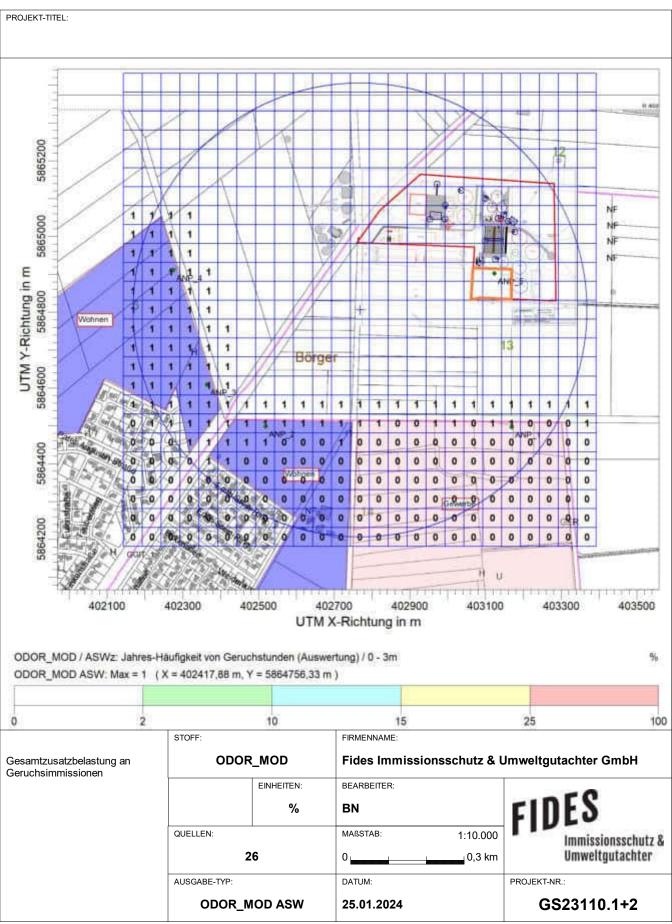
Stoff	Kenngroesse	Wert	Einheit	statistischer Fehler
N	DEPF	1,80975	kg/(ha*a)	
NH3: Ammoniak	J00	0,88	μg/m³	0,9 %
NH3: Ammoniak	J00F	0,88792	μg/m³	
NH3: Ammoniak	DEP	2,1377	kg/(ha*a)	2,8 %
NH3: Ammoniak	DEPF	2,19756	kg/(ha*a)	
NH3: Ammoniak	DRY	2,1111	kg/(ha*a)	2,8 %
NH3: Ammoniak	DRYF	2,17021	kg/(ha*a)	
NH3: Ammoniak	WET	0,0266	kg/(ha*a)	0,9 %
NH3: Ammoniak	WETF	0,0268394	kg/(ha*a)	
N[FELD]	DEPF	2,70295	kg/(ha*a)	
N[MESO]	DEPF	2,16678	kg/(ha*a)	
N[WALD]	DEPF	3,59657	kg/(ha*a)	

Auswertung der Ergebnisse:


J00/Y00: Jahresmittel der Konzentration

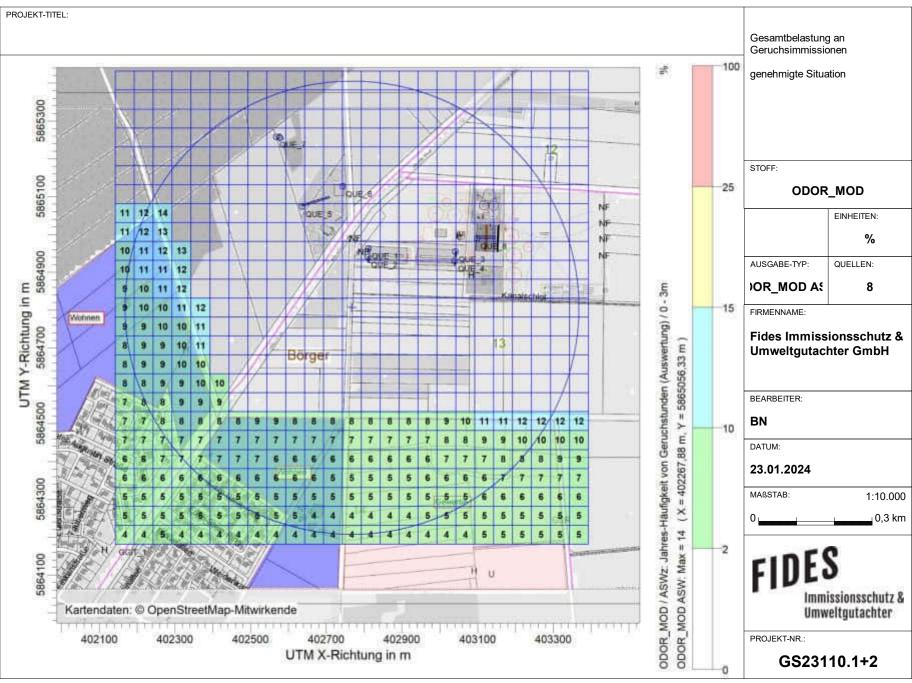
Tnn/Dnn: Höchstes Tagesmittel der Konzentration mit nn ÜberschreitungenSnn/Hnn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen

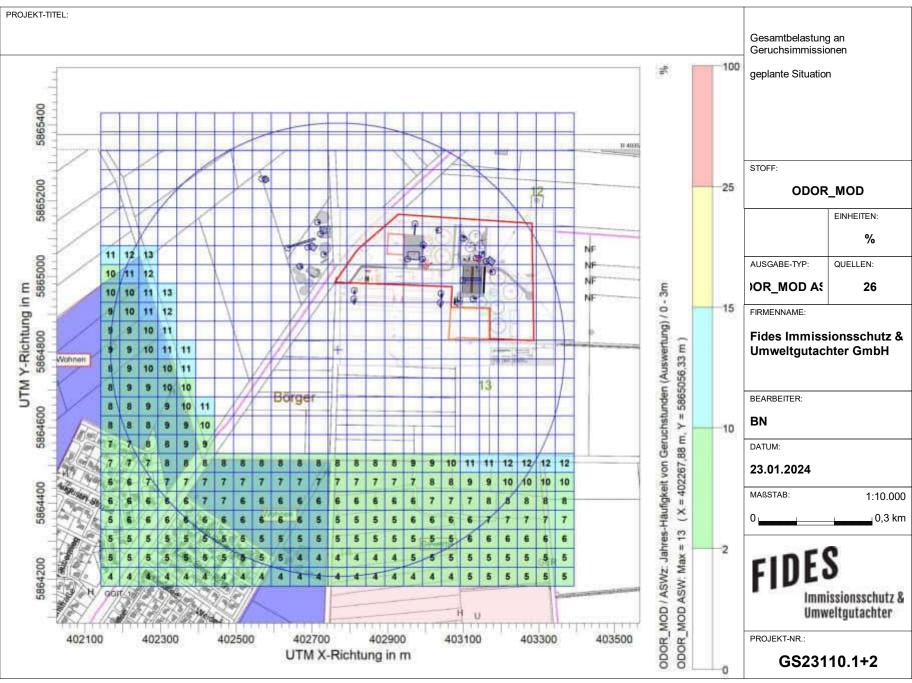
DEP: Jahresmittel der Deposition

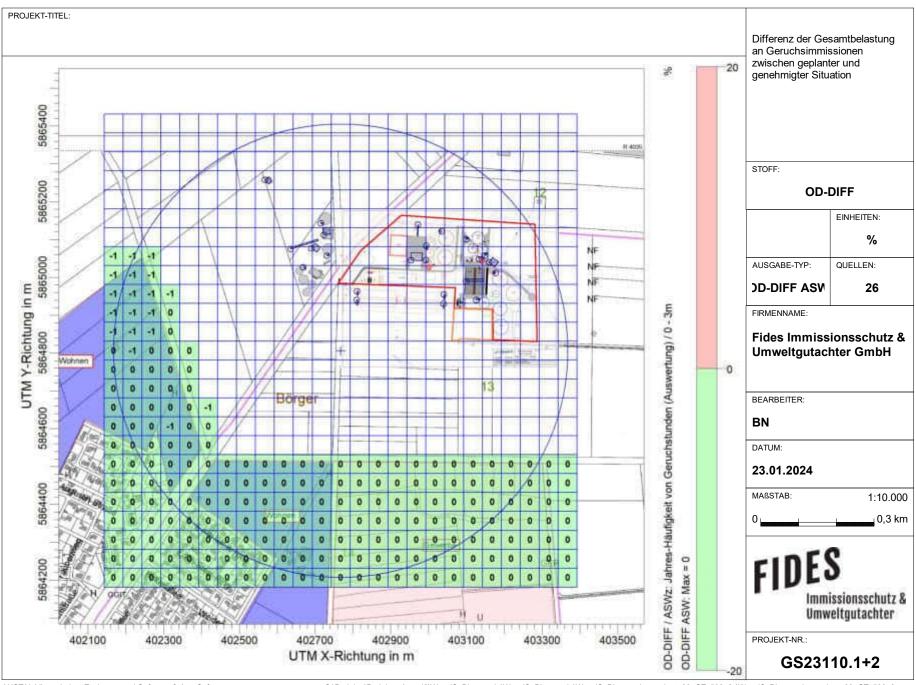


Anlage 3: Gesamtzusatzbelastung an Geruchsimmissionen - 2 %-Isolinie

Anlage 4: Gesamtzusatzbelastung an Geruchsimmissionen - Auswertegitter

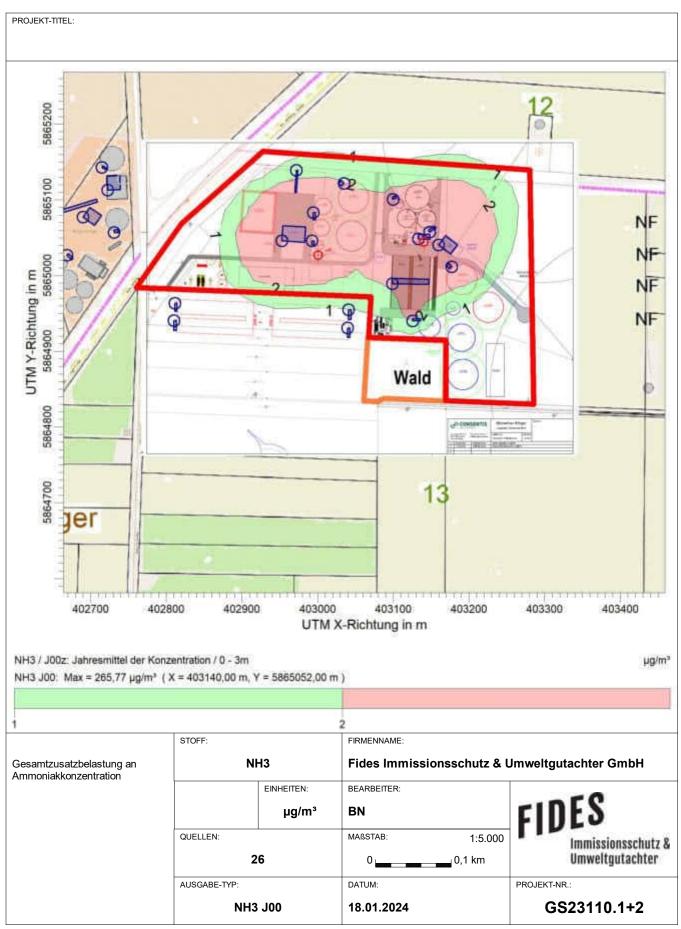


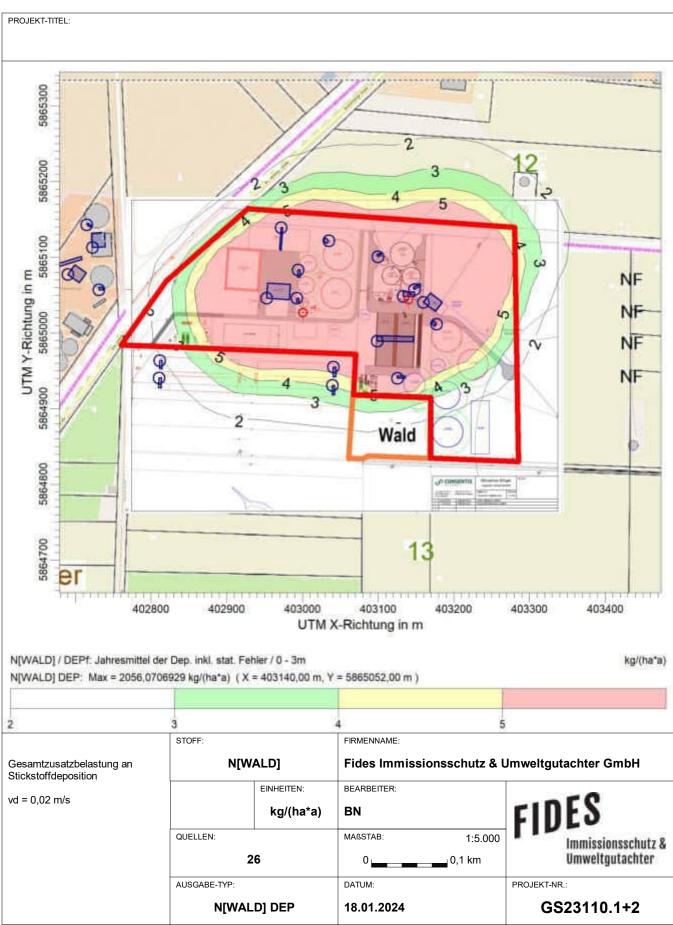

Anlage 5: Gesamtbelastung an Geruchsimmissionen


Genehmigte Situation

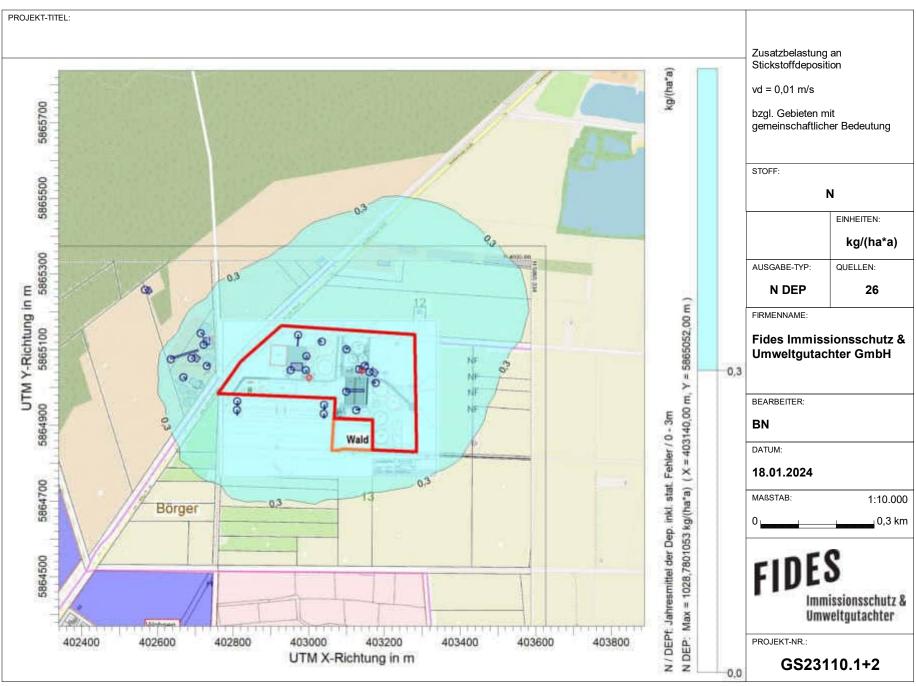
Geplante Situation

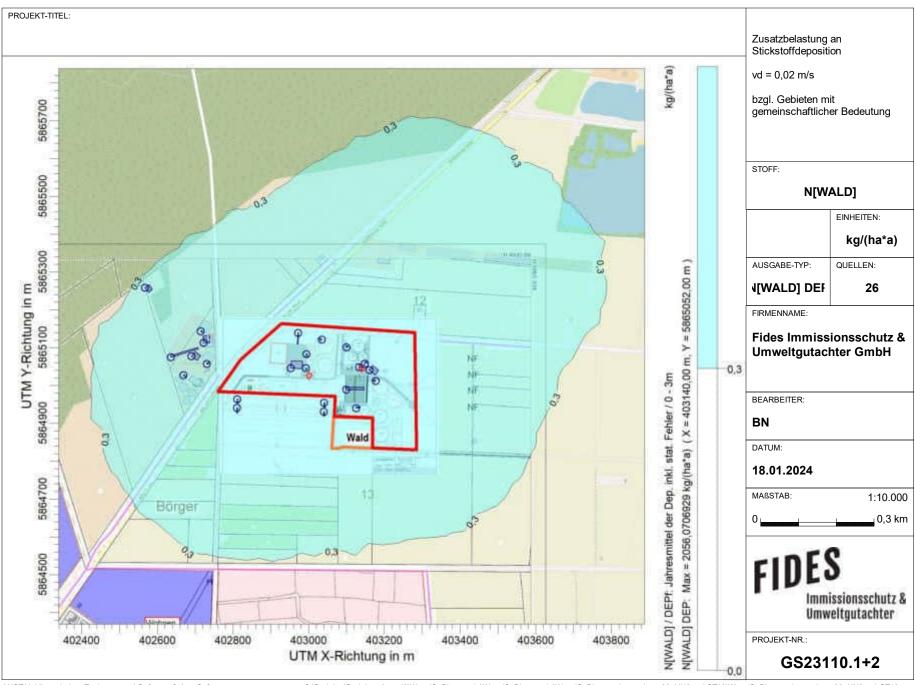
Differenz




AUSTAL View - Lakes Environmental Software & ArguSoft

 $\label{localization} $\text{C:Projekte_Austal3:WundS_Bioenergie:WundS_Bioenergie:WundS_Bioenergie:geplant_03_GT_500_2x:WundS_500_2x:WundS_$


Anlage 6: Gesamtzusatzbelastung an Ammoniak- und Stickstoffimmissionen



Anlage 7: Zusatzbelastung an Stickstoffdeposition bzgl. Gebieten gemeinschaftlicher Bedeutung

AUSTAL View - Lakes Environmental Software & ArguSoft

C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mitGT10\WundS_Bioenergie_geplant_03_NH3_mitGT10\WundS_Bioenergie_geplant_03_NH3_mitGT10\Understand S_Bioenergie_geplant_03_NH3_mitGT10\Understand S_Bioenergie_geplant_03_NH3_mitGT10\

AUSTAL View - Lakes Environmental Software & ArguSoft

C:\Projekte\Projekte_Austal3\WundS_Bioenergie\WundS_Bioenergie_geplant_03_NH3_mitGT10\WundS_Bioenergie_geplant_03_NH3_mitGT10\WundS_Bioenergie_geplant_03_NH3_mitGT10\Understand S_Bioenergie_geplant_03_NH3_mitGT10\Understand S_Bioenergie_geplant_03_NH3_mitGT10\

Anlage 8: Prüfliste für die Immissionsprognose [1]

Norman-Download-Beuth-Fides Immissionsschulz & Umweitgutachter CambH-KdMr.8001374-LtNr.8515999001-2018-07-31 (08:36

Prüfliste für die Immissionsprognose

Verfasser: B. Brit Umous,
Prüfliste ausgefüllt von: T. D. o. Ves

Version Nr.:

Datum: 74.07.7024 Prüffiste Datum: 74.07.7024

Abschnitt in VDI 3783 Blatt 13	Prûfpunkt	Entfällt	Vorhanden	Abschnitt/ Seite im Gutachten			
4.1	Aufgaben	stellung					
4.1.1	Allgemeine Angaben aufgeführt		EI-	Kop1			
	Vorhabensbeschreibung dargelegt		每	11			
	Ziel der Immissionsprognose erläutert		Þ				
	Verwendete Programme und Versionen aufge- führt		, pi	11994			
4.1.2	Beurteilungsgrundlagen dargestellt		B	1007			
4.2	Örtliche Verhältnisse						
	Ortsbesichtigung dokumentiert		b	4001			
4.2.1	Umgebungskarte vorhanden		N-	161.1			
	Geländestruktur (Orografie) beschrieben		D.	Kop 4			
4.2.2	Nutzungsstruktur beschrieben (mit eventuellen Besonderheiten)		4_	11002			
	Maßgebliche Immissionsorte identifiziert nach Schutzgütern (z. B. Mensch, Vegetation, Boden)		ф_	1,			
4.3	Anlagenbeschreibung						
	Anlage beschrieben		4	Kep 7			
	Emissionsquellenplan enthalten		B	14.0			
4.4	Schornsteinhöhe	enbestimmung					
4.4.1	Bei Errichtung neuer Schornsteine, bei Verän- derung bestehender Schornsteine, bei Zusam- menfassung der Emissionen benachbarter Schornsteine: Schornsteinhöhenbestimmung gemäß TA Luft dokumentiert, einschließlich Emissionsbestimmung für das Nomogramm	A	О				
	Bei ausgeführter Schornsteinhöhenbestimmung: umliegende Bebauung, Bewuchs und Gelän- deunebenheiten berücksichtigt	甘	В				
4.4.3	Bei Gerüchen: Schornsteinhöhe über Ausbrei- tungsrechnung bestimmt	Þ	п				
4.5	Quellen und l	1 Emissionen					
4.5.1	Quellstruktur (Punkt-, Linien-, Flächen-, Volumenquellen) beschrieben		pt	16p 4			
	Koordinaten, Ausdehnung und Ausrichtung und Höhe (Unterkante) der Quellen tabellarisch auf- geführt		p.	1.62			
4.5.2	Bei Zusammenfassung von Quellen zu Ersatz- quelle: Eignung des Ansatzes begründet	P	п				
4.5.3	Emissionen beschrieben		.b-	11002			
	Emissionsparameter hinsichtlich ihrer Eignung bewertet		Þ	11			
	Emissionsparameter tabellarisch aufgeführt		À	44500			
4.5.3.1	Bei Ansatz zeitlich veränderlicher Emissionen: zeitliche Charakteristik der Emissionsparameter dargelegt	О	p	11 tsop.			
	Bei Ansatz windinduzierter Quellen: Ansatz begründet	4	0				

Abschnitt in VDI 3783 Blatt 13	Prüfpunkt	Entfällt	Vorhanden	Abschnitt/ Seite im Gutachten		
4.5.3.2	Bei Ansatz einer Abluftfahnenüberhöhung: Vor- aussetzungen für die Berücksichtigung einer Überhöhung geprüft (Quellhöhe, Abluftge- schwindigkeit, Umgebung usw.)	О	p	Kop. 4		
4.5.3.3	Bei Berücksichtigung von Stäuben: Verteilung der Korngrößenklassen angegeben	A	0			
4.5.3.4	Bei Berücksichtigung von Stickstoffoxiden: Auf- teilung in Stickstoffmonoxid- und Stickstoffdi- oxid-Emissionen erfolgt	Á	0			
	Bei Vorgabe von Stickstoffmonoxid: Konversion zu Stickstoffdioxid berücksichtigt	N	0			
4.5.4	Zusammenfassende Tabelle aller Emissionen vorhanden		百	Kop2+501		
4.6	Deposition					
	Dargelegt, ob Depositionsberechnung erforder- lich		Þ	Hop?		
	Bei erforderlicher Depositionsberechnung: rechtliche Grundlagen (z.B. TA Luft) aufgeführt	0	ġ.	110P.2		
	Bei Betrachtung von Deposition: Depositions- geschwindigkeiten dokumentiert		Þ	110p 4		
4.7	Meteorologische Daten					
	Meteorologische Datenbasis beschrieben		- DE	KOP 4		
	Bei Verwendung übertragener Daten: Stations- name, Höhe über Normalhöhennull (NHN), Anemometerhöhe, Koordinaten und Höhe der verwendeten Anemometerposition über Grund, Messzeitraum angegeben		₽-	Aul-2		
	Bei Messungen am Standort: Koordinaten und Höhe über Grund, Gerätetyp, Messzeitraum, Datenerfassung und Auswertung beschrieben	A	п			
	Bei Messungen am Standort: Karte und Fotos des Standorts vorgelegt	A	0			
	Häufigkeitsverteilung der Windrichtungen (Windrose) grafisch dargestellt		p	12.62		
	Bei Ausbreitungsklassenstatistik (AKS): Jah- resmittel der Windgeschwindigkeit und Häufig- keitsverteilung bezogen auf TA-Luft-Stufen und Anteil der Stunden mit < 1,0 m·s ⁻¹ angegeben	4	0			
4.7.1	Räumliche Repräsentanz der Messungen für Rechengebiet begründet		4	Vop4		
	Bei Übertragungsprüfung: Verfahren angegeben und gegebenenfalls beschrieben	0	p	11		
4.7.2	Bei AKS: zeitliche Repräsentanz begründet	नेव				
	Bei Jahreszeitreihe: Auswahl des Jahres der Zeitreihe begründet	0	4	4		
4.7.3	Einflüsse von lokalen Windsystemen (Berg-/Tal-, Land-/Seewinde, Kaltluftabflüsse) diskutiert		p	4		
	Bei Vorhandensein wesentlicher Einflüsse von lokalen Windsystemen: Einflüsse berücksichtigt	4	0			
1.8	Rechen	jebiet				
4.8.1	Bei Schornsteinen: TA-Luft-Rechengebiet: Ra- dius mindestens 50 × größte Schornsteinbau- höhe	0	p	109.4		
	Bei Gerüchen: Größe an relevante Nutzung (Wohn-Misch-Gewerbegebiet, Außenbereich) angepasst	0	b	11		

Abschnitt in VDI 3783 Blatt 13	Prüfpunkt	Entfällt	Vorhanden	Abschnitt/ Seite im Gutachten				
	Bei Schomsteinen: Horizontale Maschenweite des Rechengebiets nicht größer als Schorn- steinbauhöhe (gemäß TA Luft)	0	И	A=1.2				
4.8.2	Bei Rauigkeitslänge aus CORINE-Kataster: Eignung des Werts geprüft Cam-DE	0	4	Nop4				
	Bei Rauigkeitslänge aus eigener Festlegung: Eignung begründet	ā	0					
4.9	Komplexes	Gelände						
4.9.2	Prüfung auf vorhandene oder geplante Bebau- ung im Abstand von der Quelle kleiner als das Sechsfache der Gebäudehöhe, daraus die Not- wendigkeit zur Berücksichtigung von Gebäude- einflüssen abgeleitet		ø	1100.4				
	Bei Berücksichtigung von Bebauung: Vorge- hensweise detailliert dokumentiert	4	п					
	Bei Verwendung eines Windfeldmodells: Lage der Rechengitter und aufgerasterte Gebäude- grundflächen dargestellt	p	0					
4.9.3	Bei nicht ebenem Gelände: Geländesteigung und Höhendifferenzen zum Emissionsort geprüft und dokumentiert	d	0					
	Aus Geländesteigung und Höhendifferenzen Notwendigkeit zur Berücksichtigung von Gelän- deunebenheiten abgeleitet	0	Ď.	4				
	Bei Berücksichtigung von Geländeunebenhei- ten: Vorgehensweise detailliert beschrieben	Þ	0					
4.10	Statistische Sicherheit							
	Statistische Unsicherheit der ausgewiesenen Immissionskenngrößen angegeben		Ď.	An1. 2				
4.11	Darstellung der Ergebnisse							
4.11.1	Ergebnisse kartografisch dargestellt, Maßstabsbalken, Legende, Nordrichtung ge- kennzeichnet		ь	Au (3-				
	Beurteilungsrelevante Immissionen im Karten- ausschnitt enthalten	0	pt	4				
	Geeignete Skalierung der Ergebnisdarstellung vorhanden		4	4				
4.11.2	Bei entsprechender Aufgabenstellung: Tabella- rische Ergebnisangabe für die relevanten Im- missionsorte aufgeführt	Þ	0					
4.11.3	Ergebnisse der Berechnungen verbal beschrie- ben		A	Kop 5				
4.11.4	Protokolle der Rechenläufe beigefügt		p	16117				
4,11.5	Verwendete Messberichte, Technische Regeln, Verordnungen und Literatur sowie Fremdgut- achten, Eingangsdaten, Zitate von weiteren Unterlagen vollständig angegeben		Þ	11op. 6				